Caffe模型转换成tensorflow模型

本文探讨了Caffe和TensorFlow两种深度学习框架在不同环境下的应用难点,特别是跨平台移植的问题。介绍了如何利用开源工具将Caffe训练好的模型转换为TensorFlow模型,以便更好地在iOS和Android等移动端平台上部署。
部署运行你感兴趣的模型镜像

在生产环境中,使用api调用caffe训练生成的模型,依赖的第三方库太多,环境安装是个麻烦问题,同时在平台间移植也是个很麻烦的事情。比如说,在ubuntu16下训练好的caffe模型,需要移植到ios、android手机端等平台,caffe需要做大量的开发工作。


 如果使用tensorflow的话,依赖就要少很多,可以很灵活的支持ios、android等移动端平台,可以很方便地使用api调用训练好的tensorflow模型。


另外,tensorflow还提供了模型线上部署及服务的开源框架tensorflow serving,目前仅支持与tensorflow原生模型out-of-the-box集成。


同时由于caffe有很多现成的预训练模型,所以有很多开发者使用caffe训练生产模型。


下面这个开源项目 caffe-tensorflow 提供了训练好的caffe模型转tensorflow模型的功能:
地址 https://github.com/ethereon/caffe-tensorflow 

转换需要提供caffe的网络模型文件deploy.pt和参数数据文件.caffemodel。

比如 caffe 定义的cnn网络 ResNet-101的转换命令行:


./convert.py ResNet-101-deploy.pt --caffemodel ResNet-101-model.caffemodel --code-output-path=ResNetTF.py --data-output-path=ResNetTF.npy 

 然后直接使用转换好的模型预测即可:
./classify.py  ../ResNetTF.npy  ../1.png

您可能感兴趣的与本文相关的镜像

TensorFlow-v2.15

TensorFlow-v2.15

TensorFlow

TensorFlow 是由Google Brain 团队开发的开源机器学习框架,广泛应用于深度学习研究和生产环境。 它提供了一个灵活的平台,用于构建和训练各种机器学习模型

评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值