ios-MD5加密

我们都知道现在去百度搜索MD5加密是可以进行破解的,但其实这个是暴力破解或者说也就是通过一个数据库,进行查询的破解

直接使用MD5加密可以这么做 md5String函数就是进行MD5加密的函数

 passwordd = [password md5String];

防止暴力破解的问题我们尽量可以把密码设置的复杂点

加盐

就是原密码+一个复杂的字符串,防止用户输入的密码太简单。

password = [[password stringByAppendingString:@"abc123ABC!@##"] md5String];

HMAC

原密码+一个字符串 进行拼接之后再进行MD5计算,把计算的结果+原密码再进行MD5计算,这样就增加了密码的复杂性,hmacMD5StringWithKey这个函数内部就处理了这个过程,一般来说HMAC中的那个字符串其实是来自于服务器的,在注册的时候向服务器索取就可以了,然后你的这个key服务器会返回,而且会保存在本地,如果说你在别的手机登录的话其实也是有获取这个key的过程的。

password = [password hmacMD5StringWithKey:@"abc223"];

MD5+时间 每次生成的MD5的值是不一样的

我们可以这样

1、把一个字符串进行MD5计算

2、把原密码和之前生成的MD5的值再进行HMAC加密

3、从服务器获取当前时间准确的到分钟的字符串

4、把第二步得到的HMAC值+时间和第一步产生的MD5值再进行HMAC加密

- (NSString *)getPassword:(NSString *)password {
//  1  一个字符串key    md5计算
    NSString *md5Key = [@"mimi" md5String];
//  2  把原密码和之前生成的md5值再进行hmac加密
    NSString *hmacKey = [password hmacMD5StringWithKey:md5Key];
//  3  从服务器获取时间的字符串我们进简单化了直接从一个网站获取json数据然后json解析
    NSURL *url = [NSURL URLWithString:@"http://127.0.0.1"];
    NSData *data = [NSData dataWithContentsOfURL:url];
    //JSON的反序列化
    NSDictionary *dic = [NSJSONSerialization JSONObjectWithData:data options:0 error:NULL];
    NSString *time = dic[@"key"];
    
// 4   第二步产生的hmac值+时间,和第一步产生的md5值进行hmac加密
    return [[hmacKey stringByAppendingString:time] hmacMD5StringWithKey:md5Key];
}
关于MD5其实还可以运用于搜索引擎的领域以及版权的领域。因为当我们把一个文件复制粘贴的时候其实MD5值都是不一样的,虽然文件长的一模一样。

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值