线性代数MIT-0、前言

原创 2015年07月07日 05:34:43

本系列是对MIT线性代数公开课的笔记,一是通过写博客的方式加深自己的理解,二是通过博客和有兴趣的朋友共同学习。


主讲教授:Gilbert Strang
课程书籍:《Introduction to Linear Algebra》
课程网页:http://web.mit.edu/18.06/www/
网易公开课:http://v.163.com/special/opencourse/daishu.html

说明:教授年龄有点大,说话有点啰嗦,建议大家有耐心。慢下来往往比快更有效率。
版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

《线性代数及其应用》前言翻译

Gilbert Strang的《线性代数及其应用》第四版前言翻译。

【线性代数公开课MIT Linear Algebra】 第十七课 正交基和正交矩阵

本系列笔记为方便日后自己查阅而写,更多的是个人见解,也算一种学习的复习与总结,望善始善终吧~标准正交基与正交矩阵标准正交向量组 orthonomal vectors 彼此正交orthogonal且模...

MIT 线性代数

vedio 9Suppose A m by n while m < n, then there are nonzero solutions to AX = 0. Reason: There will...

MIT 线性代数(7—9)读书笔记

——————————————————————————————————————————————————————————————————————————— 第七讲  求解Ax=0:主变量、特解 本课时将讲...

【线性代数公开课MIT Linear Algebra】 第四课 从矩阵消元到LU分解

本系列笔记为方便日后自己查阅而写,更多的是个人见解,也算一种学习的复习与总结,望善始善终吧~矩阵的逆与转置 为什么逆矩阵要反过来?这就像是…你先把鞋子脱了再脱袜子,那么反过来不就是要先穿上袜子,再...

MIT 线性代数(31—33)读书笔记

第三十一讲:线性变换及对应矩阵本讲从线性变换这一概念出发,每个线性变换都对应于一个矩阵。矩阵变换的背后正是线性变换的概念。理解线性变换的方法就是确定它背后的矩阵,这是线性变换的本质1 线性变换1.1 ...

【线性代数公开课MIT Linear Algebra】 第三课 矩阵乘法和矩阵的逆

本系列笔记为方便日后自己查阅而写,更多的是个人见解,也算一种学习的复习与总结,望善始善终吧~1. 矩阵乘法对于矩阵A∗B=CA*B=C,从四个角度来看待这一问题 元素 Cij=∏Nk=1Aik∗Bk...

MIT_线性代数笔记_03_乘法和逆矩阵

MIT 公开课:Gilbert Strang《线性代数》课程笔记(汇总)Lecture 3: Multiplication and inverse matrices 课程 3:乘法和逆矩阵矩阵乘法的...

MIT 线性代数(34—35)读书笔记

第三十四讲:左右逆和伪逆前面我们涉及到的逆(inverse)都是指左、右乘均成立的逆矩阵,即A−1A=I=AA−1A^{-1}A=I=AA^{-1}。在这种情况下,m×nm\times n矩阵AA满足...

【线性代数公开课MIT Linear Algebra】 第十一课 矩阵空间和秩1矩阵

本系列笔记为方便日后自己查阅而写,更多的是个人见解,也算一种学习的复习与总结,望善始善终吧~矩阵空间和之前学习的空间差不多,我们把矩阵当做向量,矩阵空间也是在空间内对一个矩阵进行加法或者scalar后...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)