线性代数MIT-1、方程组的几何解释

原创 2015年07月07日 07:12:56

本文是对MIT线性代数公开课第一讲的笔记。

内容包括对方程组的两种不同的解释,矩阵和向量的乘法。


以2个未知数和2个线性方程为例



1、矩阵表示


记为AX=b,其中A为系数矩阵,X为未知数向量,b为右侧向量


2、行图像

行图像就是一个方程代表一个图像,针对本例就是一个条直线。交点即为方程组的解(1,2)。


3、列图像

列图像就是从列向量的角度考虑,方程组可以看成系数矩阵A的列向量的线性组合。如下:


x和y即为线性组合的系数,由行图像可知x=1,y=2。就是在向量空间中找到“正确”的线性组合,使之等于右侧向量。即为1倍的向量1+2倍的向量2等于右侧向量b


4、大图

在课程中教授提到“大图”,就是不考虑右侧向量b,保留未知数向量X。当向量X取不同值时,系数矩阵A的列向量的线性组合将铺满整个二维空间。

5、矩阵乘以向量AX

AX可以理解为“矩阵A的列向量的线性组合”。以后会深入讲解,这次做个铺垫。



版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

【线性代数】方程组的几何解释

一、二维情况 1、给出如下的二元一次方程组:

MIT_线性代数笔记_01_方程组的几何解释

Lecture 1: The geometry of linear equations 课程 1:方程组的几何解释首先考虑最简单的二元线性方程组 {a1x+b1y=la2x+b2y=m.\begi...

[线性代数]Note 1--方程组的几何解释

这是记录麻省理工学院公开课:线性代数的笔记,网址是麻省理工公开课:线性代数
  • lc013
  • lc013
  • 2016-06-07 19:01
  • 296

线性代数导论1——方程组的几何解释

Gilbert Strang线性代数第一集 方程组的几何解释 一、方程组的行图像和列图像分析 线性方程组: , 可以很自然的写成系数矩阵相乘的形式: 即线性方程组可以写成形如  Ax=b 的形式(黑...

线性代数:方程组的几何解释

2x2 线性方程组 2x2 线性方程组的行图像Row Picture 2x2 线性方程组的列图像Column Picture 3x3 线性方程组 3x3 线性方程组的行图像Row Picture 3x...

【线性代数公开课MIT Linear Algebra】 第十一课 矩阵空间和秩1矩阵

本系列笔记为方便日后自己查阅而写,更多的是个人见解,也算一种学习的复习与总结,望善始善终吧~矩阵空间和之前学习的空间差不多,我们把矩阵当做向量,矩阵空间也是在空间内对一个矩阵进行加法或者scalar后...

MIT 线性代数(1—3)读书笔记

几年前把MIT Gilbert Strang教授的线性代数看完了,不过没做笔记,很多东西都忘了,现在打算重新看一遍,边写边做笔记。不足之处请指教。 --------------------------...

Matlab 线性代数(一)--行列式与方程组求解

1. %用克莱姆法则求解方程组 clear n=input('方程个数=') A=input('系数矩阵A=') b=input('常数列向量b=') if((size(A)~=[n,n])|(...

【线性代数公开课MIT Linear Algebra】 第十七课 正交基和正交矩阵

本系列笔记为方便日后自己查阅而写,更多的是个人见解,也算一种学习的复习与总结,望善始善终吧~标准正交基与正交矩阵标准正交向量组 orthonomal vectors 彼此正交orthogonal且模...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)