关闭

线性代数MIT-1、方程组的几何解释

297人阅读 评论(0) 收藏 举报
分类:

本文是对MIT线性代数公开课第一讲的笔记。

内容包括对方程组的两种不同的解释,矩阵和向量的乘法。


以2个未知数和2个线性方程为例



1、矩阵表示


记为AX=b,其中A为系数矩阵,X为未知数向量,b为右侧向量


2、行图像

行图像就是一个方程代表一个图像,针对本例就是一个条直线。交点即为方程组的解(1,2)。


3、列图像

列图像就是从列向量的角度考虑,方程组可以看成系数矩阵A的列向量的线性组合。如下:


x和y即为线性组合的系数,由行图像可知x=1,y=2。就是在向量空间中找到“正确”的线性组合,使之等于右侧向量。即为1倍的向量1+2倍的向量2等于右侧向量b


4、大图

在课程中教授提到“大图”,就是不考虑右侧向量b,保留未知数向量X。当向量X取不同值时,系数矩阵A的列向量的线性组合将铺满整个二维空间。

5、矩阵乘以向量AX

AX可以理解为“矩阵A的列向量的线性组合”。以后会深入讲解,这次做个铺垫。



0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:845次
    • 积分:34
    • 等级:
    • 排名:千里之外
    • 原创:3篇
    • 转载:0篇
    • 译文:0篇
    • 评论:0条
    文章存档