关闭

线性代数MIT-2、求解线性方程组

200人阅读 评论(0) 收藏 举报
分类:

本文是MIT线性代数第二讲的笔记

内容包括:消元,回代,消元矩阵。

1、消元和回代


(1)消元过程如下:

第一步(2,1):选取(1,1)为“主元”,消元使之下方的元素都为0。本例为row2减去3倍的row1

第二步(3,2):选取(2,2)为“主元”,消元使之下方的元素都为0。本例为row3减去2倍的row2

记为:[A|b]->[U|c],其中[A|b]叫做“增广矩阵”

说明:主元不能为0,如果主元为0,可以通过行交换解决。如果主元为0,主元下方都为0,则消元失效。


(2)回代过程如下:

原有方程组Ax=b,经过消元后变成Ux=c,如下


求出方程组的解为:z=-2,y=1,x=2

2、矩阵和向量相乘

为了用矩阵说明消元的步骤,总结矩阵和向量相乘的规律。

AX=b 矩阵右乘向量,相当于“矩阵中列向量的线性组合,结果为列向量”

XA=b 矩阵左乘向量,相当于“矩阵中行向量的线性组合,结果为行向量”



3、用矩阵来描述消元

本例中用到的都是行变换,因此“左乘对应的向量”。

第一步是用行2减去3倍的行1,同时保持行1和行3不变

第二步是用行3减去2倍的行2,同时保持行1和行2不变。


说明:左侧标记颜色的矩阵叫做“初等变换矩阵”,其中不同颜色的行向量不会“跨行”影响乘积结果


0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:892次
    • 积分:36
    • 等级:
    • 排名:千里之外
    • 原创:3篇
    • 转载:0篇
    • 译文:0篇
    • 评论:0条
    文章存档