线性代数MIT-2、求解线性方程组

原创 2015年07月07日 13:42:11

本文是MIT线性代数第二讲的笔记

内容包括:消元,回代,消元矩阵。

1、消元和回代


(1)消元过程如下:

第一步(2,1):选取(1,1)为“主元”,消元使之下方的元素都为0。本例为row2减去3倍的row1

第二步(3,2):选取(2,2)为“主元”,消元使之下方的元素都为0。本例为row3减去2倍的row2

记为:[A|b]->[U|c],其中[A|b]叫做“增广矩阵”

说明:主元不能为0,如果主元为0,可以通过行交换解决。如果主元为0,主元下方都为0,则消元失效。


(2)回代过程如下:

原有方程组Ax=b,经过消元后变成Ux=c,如下


求出方程组的解为:z=-2,y=1,x=2

2、矩阵和向量相乘

为了用矩阵说明消元的步骤,总结矩阵和向量相乘的规律。

AX=b 矩阵右乘向量,相当于“矩阵中列向量的线性组合,结果为列向量”

XA=b 矩阵左乘向量,相当于“矩阵中行向量的线性组合,结果为行向量”



3、用矩阵来描述消元

本例中用到的都是行变换,因此“左乘对应的向量”。

第一步是用行2减去3倍的行1,同时保持行1和行3不变

第二步是用行3减去2倍的行2,同时保持行1和行2不变。


说明:左侧标记颜色的矩阵叫做“初等变换矩阵”,其中不同颜色的行向量不会“跨行”影响乘积结果


相关文章推荐

【线性代数】线性方程组的求解

上一篇文章讲述了Ax=0的解和矩阵A的零空间,这里我们讨论Ax=b的解以及矩阵A的列空间。 Ax=0是肯定有解的,因为总存在x为全零向量,使得方程组成立。而Ax=b是不一定有解的,我们需要高斯消元来确...

线性代数:第四章 向量组的线性相关性(2)向量空间 线性方程组解的结构

第三节 向量空间 一.数字概念 定义3.1  设V是n维向量集合,且非空,若 (i)  则,  ; (ii)  则  。 则称V是一个向量空间。 定义3.2  设  是两个向量空间,若  ...

(9.1.3)线性代数之矩阵变换和线性方程组

1-初等变换 1-定义 2-示例 3-定律 2-矩阵的秩 1 意义 2-定理 3-线性方程组求解 1-定律 2-例题1-初等变换1.1-定义1.2-示例 1.3-定律 2-矩阵的秩2.1 ...

线性代数:第三章 矩阵的初等变换与线性方程组(1)矩阵的初等变换 矩阵的秩

第一节 矩阵的初等变换 一. 数学概念 等价关系具有的性质: (i)  反身性 A~A; (ii) 对称性 若A~B,则B~A; (iii)  传递性 若A~B, B~C,则A~C; ...

线性代数(1)--n维向量与线性方程组

第四章 n维向量与线性方程组编者注:第四章为n维向量与线性方程组,在线性代数整个课程学习中的地位都是至关重要的。线性代数作为工科生的一门基础学科,对于以后个人的发展都是有着极大的促进作用的。这一章小助...

线性代数复习 第四章 线性方程组

第四章 线性方程组4.1 高斯消元法基本概念基本上,研究矩阵和线性代数,就是为了求解方程组,三种基本的矩阵变换也是和方程的变换相等价的,如交换两组方程组的位置,把方程的两边同时乘以一个非零常数,方程组...

线性代数笔记:线性方程组

线性方程组
  • Fast_G
  • Fast_G
  • 2016年10月09日 15:32
  • 372

【线性代数】矩阵与线性方程组的几何意义

讨论矩阵和线性方程组的几何意义

线性代数(十二) : 线性方程组Ax=b可解性与解的结构

矩阵的列空间与矩阵的秩

线性代数之从线性方程组看线性组合

前言: 对于一个线性方程组,我们可以通过画出每条方程所代表的曲线,所有曲线的交点就是该线性方程组的解。这种做法可以看做是对矩阵方程Ax = b 的行解法。如果从列的角度看,就是线性组合了。 例如线...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:线性代数MIT-2、求解线性方程组
举报原因:
原因补充:

(最多只允许输入30个字)