线性代数MIT-2、求解线性方程组

原创 2015年07月07日 13:42:11

本文是MIT线性代数第二讲的笔记

内容包括:消元,回代,消元矩阵。

1、消元和回代


(1)消元过程如下:

第一步(2,1):选取(1,1)为“主元”,消元使之下方的元素都为0。本例为row2减去3倍的row1

第二步(3,2):选取(2,2)为“主元”,消元使之下方的元素都为0。本例为row3减去2倍的row2

记为:[A|b]->[U|c],其中[A|b]叫做“增广矩阵”

说明:主元不能为0,如果主元为0,可以通过行交换解决。如果主元为0,主元下方都为0,则消元失效。


(2)回代过程如下:

原有方程组Ax=b,经过消元后变成Ux=c,如下


求出方程组的解为:z=-2,y=1,x=2

2、矩阵和向量相乘

为了用矩阵说明消元的步骤,总结矩阵和向量相乘的规律。

AX=b 矩阵右乘向量,相当于“矩阵中列向量的线性组合,结果为列向量”

XA=b 矩阵左乘向量,相当于“矩阵中行向量的线性组合,结果为行向量”



3、用矩阵来描述消元

本例中用到的都是行变换,因此“左乘对应的向量”。

第一步是用行2减去3倍的行1,同时保持行1和行3不变

第二步是用行3减去2倍的行2,同时保持行1和行2不变。


说明:左侧标记颜色的矩阵叫做“初等变换矩阵”,其中不同颜色的行向量不会“跨行”影响乘积结果


MIT_线性代数笔记_01_方程组的几何解释

Lecture 1: The geometry of linear equations 课程 1:方程组的几何解释首先考虑最简单的二元线性方程组 {a1x+b1y=la2x+b2y=m.\begi...
  • xhf0374
  • xhf0374
  • 2017年03月18日 09:56
  • 2317

【线性代数】线性方程组的求解

上一篇文章讲述了Ax=0的解和矩阵A的零空间,这里我们讨论Ax=b的解以及矩阵A的列空间。 Ax=0是肯定有解的,因为总存在x为全零向量,使得方程组成立。而Ax=b是不一定有解的,我们需要高斯消元来确...
  • tengweitw
  • tengweitw
  • 2014年11月08日 15:16
  • 2959

利用牛顿迭代法求解非线性方程组

最近一个哥们,是用牛顿迭代法求解一个四变量方程组的最优解问题,从网上找了代码去改进,但是总会有点不如意的地方,迭代的次数过多,但是却没有提高精度,真是令人揪心!        经分析,发现是这个方程...
  • liuguiyangnwpu
  • liuguiyangnwpu
  • 2014年05月08日 22:09
  • 31765

线性代数:第四章 向量组的线性相关性(2)向量空间 线性方程组解的结构

第三节 向量空间 一.数字概念 定义3.1  设V是n维向量集合,且非空,若 (i)  则,  ; (ii)  则  。 则称V是一个向量空间。 定义3.2  设  是两个向量空间,若  ...
  • GarfieldEr007
  • GarfieldEr007
  • 2016年03月03日 14:40
  • 1390

线性代数中的线性方程组_part1

第一章      线性代数中的线性方程组 【Section】线性方程组 线性方程组是由一个或几个包含相同变量x1,x2,…,xn的线性方程组成的。方程组所有可能的解的集合称为线性方程组的解集。如果...
  • wvence
  • wvence
  • 2012年08月10日 00:16
  • 1807

线性代数 04.06 线性方程组解的结构

线性方程组解的结构
  • longji
  • longji
  • 2017年12月24日 20:05
  • 52

线性代数:第三章 矩阵的初等变换与线性方程组(1)矩阵的初等变换 矩阵的秩

第一节 矩阵的初等变换 一. 数学概念 等价关系具有的性质: (i)  反身性 A~A; (ii) 对称性 若A~B,则B~A; (iii)  传递性 若A~B, B~C,则A~C; ...
  • GarfieldEr007
  • GarfieldEr007
  • 2016年03月03日 14:35
  • 1634

线性代数(1)--n维向量与线性方程组

第四章 n维向量与线性方程组编者注:第四章为n维向量与线性方程组,在线性代数整个课程学习中的地位都是至关重要的。线性代数作为工科生的一门基础学科,对于以后个人的发展都是有着极大的促进作用的。这一章小助...
  • williamyi96
  • williamyi96
  • 2016年08月29日 10:15
  • 716

(9.1.3)线性代数之矩阵变换和线性方程组

1-初等变换 1-定义 2-示例 3-定律 2-矩阵的秩 1 意义 2-定理 3-线性方程组求解 1-定律 2-例题1-初等变换1.1-定义1.2-示例 1.3-定律 2-矩阵的秩2.1 ...
  • fei20121106
  • fei20121106
  • 2015年04月05日 10:36
  • 522

一、线性代数中的线性方程组

最近读了《线性代数及其应用》、《程序员的数学3:线性代数》 整理笔记,方便复习。  一、线性代数中的线性方程组 1.1线性方程组    形如              a1x1+a2x2+…...
  • weixin_37721518
  • weixin_37721518
  • 2018年01月09日 15:56
  • 6
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:线性代数MIT-2、求解线性方程组
举报原因:
原因补充:

(最多只允许输入30个字)