关闭

hash算法学习

164人阅读 评论(0) 收藏 举报
分类:
转载自:http://blog.csdn.net/sangyongjia/article/details/37312851
              http://my.oschina.net/YeanXu/blog/15613

实现一个hash算法时需要思考一下三个问题:
      第一:hash函数的选择。
      第二:hash冲突的解决办法。
      第三:装填因子大小的选择。装填因子  a=n / m。其中m为hash表的bucket个数;n为关键字的个数。装填因子越大,产生hash冲突就严重。

Hash查找因为其O(1)的查找性能而著称,被对查找性能要求高的应用所广泛采用。它的基本思想是:
     (1) 创建一个定长的线性Hash表,一般可以初始化时指定length;
     (2) 设计Hash函数,将关键字key散射到Hash表中。其中hash函数设计是最为关键的,均匀分布、冲突概率小全在它;
     (3) 通常采用拉链方法来解决hash冲突问题,即散射到同一个hash表项的关键字,以链表形式来表示(也称为桶bucket);
     (4) 给定关键字key,就可以在O(1) + O(m)的时间复杂度内定位到目标。其中,m为拉链长度,即桶深。

Hash应用中,字符串是最为常见的关键字,应用非常普通,现在的程序设计语言中基本上都提供了字符串hash表的支持。字符串hash函数非常多,常见的主要有Simple_hash, RS_hash, JS_hash, PJW_hash, ELF_hash, BKDR_hash, SDBM_hash, DJB_hash, AP_hash, CRC_hash等。评估hash函数优劣的基准主要有以下两个指标:
     (1) 散列分布性
     即桶的使用率backet_usage = (已使用桶数) / (总的桶数),这个比例越高,说明分布性良好,是好的hash设计。
     (2) 平均桶长
     即avg_backet_len,所有已使用桶的平均长度。理想状态下这个值应该=1,越小说明冲突发生地越少,是好的hash设计。

hash函数计算一般都非常简洁,因此在耗费计算时间复杂性方面判别甚微

几个比较著名的哈希算法:
public final class HashFunctionLibrary {

	public static long RSHash(String str) {
		int b = 378551;
		int a = 63689;
		long hash = 0;

		for (int i = 0; i < str.length(); i++) {
			hash = hash * a + str.charAt(i);
			a = a * b;
		}

		return hash;
	}

	public static long JSHash(String str) {
		long hash = 1315423911;

		for (int i = 0; i < str.length(); i++) {
			hash ^= ((hash << 5) + str.charAt(i) + (hash >> 2));
		}

		return hash;
	}

	// 效果不好,见 http://blog.csdn.net/sangyongjia/article/details/37312851
	public static long PJWHash(String str) {
		long BitsInUnsignedInt = (long) (4 * 8);
		long ThreeQuarters = (long) ((BitsInUnsignedInt * 3) / 4);
		long OneEighth = (long) (BitsInUnsignedInt / 8);
		long HighBits = (long) (0xFFFFFFFF) << (BitsInUnsignedInt - OneEighth);
		long hash = 0;
		long test = 0;

		for (int i = 0; i < str.length(); i++) {
			hash = (hash << OneEighth) + str.charAt(i);

			if ((test = hash & HighBits) != 0) {
				hash = ((hash ^ (test >> ThreeQuarters)) & (~HighBits));
			}
		}

		return hash;
	}

	// 效果不好,见 http://blog.csdn.net/sangyongjia/article/details/37312851
	public static long ELFHash(String str) {
		long hash = 0;
		long x = 0;

		for (int i = 0; i < str.length(); i++) {
			hash = (hash << 4) + str.charAt(i);

			if ((x = hash & 0xF0000000L) != 0) {
				hash ^= (x >> 24);
			}
			hash &= ~x;
		}

		return hash;
	}

	public static long BKDRHash(String str) {
		long seed = 131; // 31 131 1313 13131 131313 etc..
		long hash = 0;

		for (int i = 0; i < str.length(); i++) {
			hash = (hash * seed) + str.charAt(i);
		}

		return hash;
	}

	public static long SDBMHash(String str) {
		long hash = 0;

		for (int i = 0; i < str.length(); i++) {
			hash = str.charAt(i) + (hash << 6) + (hash << 16) - hash;
		}

		return hash;
	}

	public static long DJBHash(String str) {
		long hash = 5381;

		for (int i = 0; i < str.length(); i++) {
			hash = ((hash << 5) + hash) + str.charAt(i);
		}

		return hash;
	}

	public static long DEKHash(String str) {
		long hash = str.length();

		for (int i = 0; i < str.length(); i++) {
			hash = ((hash << 5) ^ (hash >> 27)) ^ str.charAt(i);
		}

		return hash;
	}

	public static long BPHash(String str) {
		long hash = 0;

		for (int i = 0; i < str.length(); i++) {
			hash = hash << 7 ^ str.charAt(i);
		}

		return hash;
	}

	public static long FNVHash(String str) {
		long fnv_prime = 0x811C9DC5;
		long hash = 0;

		for (int i = 0; i < str.length(); i++) {
			hash *= fnv_prime;
			hash ^= str.charAt(i);
		}

		return hash;
	}

	public static long APHash(String str) {
		long hash = 0xAAAAAAAA;

		for (int i = 0; i < str.length(); i++) {
			if ((i & 1) == 0) {
				hash ^= ((hash << 7) ^ str.charAt(i) * (hash >> 3));
			} else {
				hash ^= (~((hash << 11) + str.charAt(i) ^ (hash >> 5)));
			}
		}

		return hash;
	}
}
0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:208263次
    • 积分:4457
    • 等级:
    • 排名:第7047名
    • 原创:195篇
    • 转载:227篇
    • 译文:0篇
    • 评论:21条
    最新评论