poj 2002 -- hash

原创 2012年03月22日 20:22:22

题目:给你n个点,求能组成多少个正方形?

范围最大1000个点,时间3.5s,暴力枚举不用想肯定会超时。超时并不代表枚举行不通,实际上我们可以枚举两个点,然后在考虑下面的情况。

首先搞清楚两个问题,1、给你两个点,你能否求出用这两个点组成正方形一条边的其他两个点?2、如果给你一个点,你能否快速O(1)时间内告诉我这个点是否在给出的所有点当中。

 

如果你解决了上面两个问题,这个题目就好办了。

首先第一个问题,给你两个点,求正方形其他两个点坐标,注意,这里千万不要把这两个点当做对角线上的两个点,这样的话,你将会求不出正方形的个数。我们就以这两个点连成的线段当做正方形的一条边来做,不考虑对角线情况。

那么,给你正方形一条边,肯定有两种组成正方形的情况,关于这条边对称的肯定有两个正方形,还是给个图吧!

 

如以AB线段为边可以有1 2两个正方形。

如果A点坐标为x1,y1, B点x2,y2,可以求出两组(x3,y3)和(x4,y4)。

 

根据上图1三角形和2三角形全等周围的框都是平行于x轴和y轴的,很容易求得另外两个点的两组坐标

已知: (x1,y1)  (x2,y2)

则:   x3=x1+(y1-y2)   y3= y1-(x1-x2)

x4=x2+(y1-y2)   y4= y2-(x1-x2)

x3=x1-(y1-y2)   y3= y1+(x1-x2)

x4=x2-(y1-y2)   y4= y2+(x1-x2)

 

第二个问题,就是如果知道了C,D两个点如何判断这两个点是否在点集里面。

方法很多,可以用C++ STL,同时也可以用hash。

hash,有很多方法构造散列表,这里用平方求余法。关于hash方面的知识,这里就不介绍了。


下面就只剩下代码了:

#include <iostream>
using namespace std;

struct Node
{
	int x,y;
	Node * next;
}node[40001];

int n;
int cod[1005][2];
int Find(int x, int y)
{
	int key = (x * x + y * y) % 40001;
	Node *tmp = &node[key];
	while (tmp->next != NULL)
	{
		tmp = tmp->next;
		if (tmp->x == x && tmp->y == y)
		{
			return 1;
		}
	}
	return 0;
}
int main()
{
	while (scanf("%d", &n) && n)
	{
		memset(node, 0, sizeof(node));
		Node * point;
		for (int i = 1; i <= n; ++ i) 
		{
			point = new Node;
			scanf("%d %d", &cod[i][0], &cod[i][1]);
			point->x = cod[i][0];
			point->y = cod[i][1];
			point->next = NULL;

			int key = (cod[i][0] * cod[i][0] + cod[i][1] * cod[i][1]) % 40001;
			Node *tmp = &node[key];
			while (tmp->next != NULL)
			{
				tmp = tmp->next;
			}
			tmp->next = point;
		}

		int ans = 0;
		int x1,y1,x2,y2;
		for (int i = 1; i < n; ++ i)
		{
			for (int j = i + 1; j <= n; ++ j)
			{
				//two points on one side
				x1 = cod[i][0] + (cod[i][1] - cod[j][1]);
				y1 = cod[i][1] - (cod[i][0] - cod[j][0]);
				x2 = cod[j][0] + (cod[i][1] - cod[j][1]);
				y2 = cod[j][1] - (cod[i][0] - cod[j][0]);
				if (Find(x1,y1) && Find(x2,y2))
				{
					ans ++;
				}
				//
				x1 = cod[i][0] - (cod[i][1] - cod[j][1]);
				y1 = cod[i][1] + (cod[i][0] - cod[j][0]);
				x2 = cod[j][0] - (cod[i][1] - cod[j][1]);
				y2 = cod[j][1] + (cod[i][0] - cod[j][0]);
				if (Find(x1,y1) && Find(x2,y2))
				{
					ans ++;
				}
			}
		}
		printf("%d\n", ans / 4);
	}
	return 0;
}


 注意,最后求出的总数要除以4,为什么呢?比如一个正方形四个点顺时针依次是 1 2 3 4.那么我们枚举点的时候,肯定是1-2 1-3 1-4 2-3 2-4 3 -4,这里面可以有正方形的是1-2, 1-4, 2-3, 3-4所以重复了4遍。

 

版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

POJ 2002 Squares (Hash)

题意:给你二维平面点集 让你找出其中能组成多少个正方形 思路:对每一个点进行哈希 枚举两个点做为正方形的一条边 然后再求另外两个点 看看原点集中是否存在这两个点 由于枚举的是每条边 则一个正方形会被...
  • s_h_r
  • s_h_r
  • 2015-06-16 13:10
  • 184

poj 2002 HASH判断正方形

题意:给出一些直角坐标系的点,求这些点可以组成多少个正方形。 思路:hash 正方形一条边的两个点的和,然后求另外两个点,如果可以找到构成这个正方形的点的话,个数加一 #include #incl...

Poj 2002 Squares (正方形个数 Hash)

题意:平面内一堆点,问其中有多少个正方形,相同的四个点,不同顺序构成的正方形视为同一正方形。 思路:设两个点的坐标为(a1,a2),(b1,b2),若构成正方形,另两个点的坐标是:(a1-(a2-b2...

poj 2002 正方形个数 (对点的hash 存储)

poj 2002 Squares题意: 给定N个点,求出这些点一共可以构成多少个正方形。 分析: 若正方形为ABCD,A坐标为(x1, y1),B坐标为(x2, y2),则很容易可以推出C和D...

POJ2002 Squares(hash)

给出N个点,问这些点能组成多少个正方形,N小于1000,显然的,思路是,先确定正方形的两个顶点,然后在点集中查找另外两个顶点 至于查找,有两种做法,一个是二分,一个是hash,很明显,has...

POJ 2002 Squares -- Hash

Squares Time Limit: 3500MS   Memory Limit: 65536K Total Submissions: 15891   Accep...

poj 2002 Squares(枚举+点hash)

Squares Time Limit: 3500MS   Memory Limit: 65536K Total Submissions: 12372   Accep...

POJ-2002,3432(搜点,hash或二分)

hash版本,ans/2是因为如(0,0),(0,3),(3,0),(3,3) (0,0)(0,3)和(0,3)(3,3)都满足,但只有一个正方形: #define N 2001 #define ...

poj 2002 Squares(hash)

意义给你n个点的坐标,问你可以围成多少个正方形。思路 可以得出 temp.x = p[i].x + (p[i].y - p[j].y); temp.y = p[i].y + (p[j].x - ...

POJ 2002 Squares 计算集合 点的hash

题目大意:给出平面上的n个点,问能组成多少个正方形。 思路:一开始看时间3秒半,就想用set水过,然而失败了。没办法手写hash吧。观察坐标的范围, CODE: #inclu...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)