逐次超松弛迭代法解线性方程组(Matlab程序)

原创 2012年03月30日 18:38:03

%---逐次超松弛迭代法-----
%---successive over-reaxation iteration method
clear;clc;
A=[10,-1,-2;-1,10,-2;-1,-1,5];
b=[72,83,42]';
N=length(b);    %解向量的维数
fprintf('库函数计算结果:');
x=inv(A)*b      %库函数计算结果

x=zeros(N,1);%迭代初始值
%-----(A=D-E-F)------
D=diag(diag(A));
E=-tril(A,-1);%下三角
F=-triu(A,1);%上三角
w=1.1;  %松弛因子,一般0<w<2
B=inv(D-w*E)*[(1-w)*D+w*F];g=w*inv(D-w*E)*b;
eps=0.00001;%相邻解的距离小于该数时,结束迭代

%--------开始迭代-------
for k=1:100 %最大迭代次数为100
    fprintf('第%d次迭代:',k);
    y=B*x+g;
    if abs(x-y)<eps    
        break;
    end
    x=y
end
x

三种迭代法解方程组(雅可比Jacobi、高斯-赛德尔Gaisi_saideer、逐次超松弛SOR)

分析用下列迭代法解线性方程组的收敛性,并求出使||Xk+1-Xk||2
  • qdbszsj
  • qdbszsj
  • 2015年04月25日 18:19
  • 2511

【学习笔记】SVM算法-松弛变量和最优化条件

关于支持向量机,大神July在《理解SVM的三层境界》中已经做了非常详细的讲解。博客链接如下: http://blog.csdn.net/v_july_v/article/details/76248...
  • xavier_wu01
  • xavier_wu01
  • 2015年02月27日 12:10
  • 2474

MPI程序 对等模式的 Jacobi迭代

/* 对等模式的MPI程序:test_8_1_2.c Jacobi迭代:迭代数据按列进行分割, 并假设一共有4个进程同时并行计算。时间:15.7.27 Jason Zhou 热...
  • XingKong_678
  • XingKong_678
  • 2015年07月27日 10:11
  • 1107

超松弛迭代法解线性方程组

  • 2009年03月19日 17:28
  • 1KB
  • 下载

数值分析 Gauss-Seidel迭代法求解线性方程组 MATLAB程序实现

Gauss-Seidel迭代法 参考数值分析第四版 颜庆津著 P39 运行输入 运行结果 函数内容(保存为gauss.m文件,在MATLAB中运行) %Gauss-Seidel迭代法求解线性方程组。迭...
  • jingmiaa
  • jingmiaa
  • 2015年11月06日 19:36
  • 3869

用高斯消元法解线性方程组 的MATLAB程序

  • 2012年06月24日 16:34
  • 626B
  • 下载

逐次超松弛迭代matlab程序

  • 2015年03月01日 22:06
  • 900B
  • 下载

线性方程组的迭代法及程序实现

  • 2013年12月12日 19:49
  • 362KB
  • 下载

基于matlab的Guass-Seidel(高斯--赛德尔) 迭代法求解线性方程组

Guass-Seidel(高斯–赛德尔) 迭代法(简称 G−S 迭代)是对 Jacobi 迭代的一种改进. 了解G-S迭代法之前先了解什么是Jacobi迭代?链接如下: http://blog.c...
  • zengxyuyu
  • zengxyuyu
  • 2016年11月06日 20:49
  • 5259

基于matlab的jacobi(雅可比)迭代法求解线性方程组

考虑线性方程组Ax=bAx = b 其中A为非奇异矩阵,当A为低阶稠密矩阵是,选主元消去法是有效方法。 但对于A 的阶数n很大,零元素较多的大型稀疏矩阵方程组,利用迭代法求解则更为合适。迭代法通常...
  • zengxyuyu
  • zengxyuyu
  • 2016年11月06日 16:14
  • 4934
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:逐次超松弛迭代法解线性方程组(Matlab程序)
举报原因:
原因补充:

(最多只允许输入30个字)