Jacobi迭代法解线性方程组(C语言)

原创 2012年03月30日 18:44:32

/*-------------Jacobi迭代法解线性方程组---------

参考教材:《数值分析》李乃成,梅立泉,科学出版社
    《计算方法教程》第二版 凌永祥,陈明逵*/

#include<stdio.h>
#include<math.h>

int main(void)
{
 double A[5][5] = {{28,-3,0,0,0},
      {-3,38,-10,0,-5},
     {0,-10,25,-15,0},
     {0,0,-15,45,0},
     {0,-5,0,0,30}};
 double b[5] = {10,0,0,0,0};
 double x[5] = {0}; //第k+1次迭代的结果
 double xx[5] = {0}; //第k次迭代的结果
 int size = 5;
 int Max = 100;  //最大迭代次数
 double residual = 0.0;  //
 double sum = 0.0; 
 double dis = 0.0;
 double dif = 1.0;  //相邻迭代的结果差
 double eps = 1.0e-3; //迭代精度

 for(int k=1;(k<Max)&&(dif>eps);k++)
 {
  dif = 0.0;
  printf("\n第%d次迭代的结果:\n",k);
 
  for(int i=0;i<size;i++)
  {
   for(int j=0;j<size;j++)
   {
    if(i!=j)
    {
     sum +=A[i][j]*xx[j];
    }

   }
   x[i] = (b[i]-sum)/A[i][i];
   sum = 0.0; 

  } 
  residual=0.0;
  //计算相邻迭代的结果差
  for(int m=0;m<size;m++)
  {
   dis=fabs(x[m]-xx[m]);
   if(dis>residual)
    residual=dis;
  }
  dif=residual;
  //打印第k次的结果
  for(i=0;i<size;i++)
  {
   printf("%12.8f ",x[i]);
   xx[i]=x[i];
  }
  printf("\n与上次计算结果的距离(2范数):%12.8f \n",dif);

 }
  printf("\n迭代计算的结果为:\n");
  for(k=0;k<size;k++)
  {
   printf("%12.8f ",xx[k]);
  }
  printf("\n");
 return 0;
}

版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

Jacobi迭代和Gauss迭代 c语言实现

/* *TestMain.cpp *功能:利用Jacobi迭代和Gauss迭代求解方程组 *时间:2013.4.1 */ #include "Jacobi.h" #include "Gauss.h" ...

基于matlab的jacobi(雅可比)迭代法求解线性方程组

考虑线性方程组Ax=bAx = b 其中A为非奇异矩阵,当A为低阶稠密矩阵是,选主元消去法是有效方法。 但对于A 的阶数n很大,零元素较多的大型稀疏矩阵方程组,利用迭代法求解则更为合适。迭代法通常...

Jacobi迭代法求线性方程组

华南理工大学,计算方法实验二:正确应用所学方法求出给定的线性方程组满足一定精度要求的数值解。

分别用雅可比(Jacobi)迭代法和高斯—塞德尔(Gauss—Seidel)迭代法求解线性方程组

算法介绍(迭代法介绍): 代码C语言实现; # include # include # define N 6 /* *使用雅可比迭代法和高斯-赛德尔迭代法 求解线性方程组 ...

迭代法解线性方程组

  • 2012-11-29 18:57
  • 51KB
  • 下载

解线性方程组的迭代法

  • 2011-12-25 23:14
  • 537KB
  • 下载

雅克比方法迭代法解线性方程组

import java.util.Scanner; public class Jacobi { /** * @param args */ public static void main(S...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)