Openstack NUMA分析与使用

原创 2015年07月07日 15:54:38

一、Openstack NUMA analysis

1、  Openstack是否提供了NUMA的入口以供我们使用?

是的,已经提供了,并且可以正常使用。

 

2、  有哪些入口?

1)      Flavor

为Flavor添加元数据,即extra-specs,通过设置以下几种关键字:

hw:numa_nodes=NN                                    - VM中NUMA的个数

hw:numa_mempolicy=preferred|strict      - VM中 NUMA 内存的使用策略

hw:numa_cpus.0=<cpu-list>                      - VM 中在NUMA node 0的cpu

hw:numa_cpus.1=<cpu-list>                      - VM 中在NUMA node 1的cpu

hw:numa_mem.0=<ram-size>                   - VM 中在NUMA node 0的内存大小(M)

hw:numa_mem.1=<ram-size>                   -VM 中在NUMA node 1的内存大小(M)

2)      Image

为Image添加元数据,即Image的metadata,通过设置以下几种关键字:

hw_numa_nodes=NN                                  - numa of NUMA nodes to expose to theguest.

hw_numa_mempolicy=preferred|strict     - memory allocation policy

hw_numa_cpus.0=<cpu-list>                     - mapping of vCPUS N-M toNUMA node 0

hw_numa_cpus.1=<cpu-list>                     - mapping of vCPUS N-M toNUMA node 1

hw_numa_mem.0=<ram-size>                 - mapping N MB of RAM toNUMA node 0

hw_numa_mem.1=<ram-size>                 - mapping N MB of RAM toNUMA node 1

 

以下是openstack接口文档中对Flavordextra-specs 和image metadata所提供的接口截图,接口文档可在openstack官网获取。

 

 


3、  openstack代码中,处理NUMA的地方在哪里?

对NUMA相关数据的解析和处理,openstackJuno版本中,提供了以下class(在nova/virt/hardware.py文件中):

1)      class VirtNUMATopologyCell(object):

NUMA单元,定义了NUMA cell内的基本数据成员。

2)      class VirtNUMATopologyCellLimit(VirtNUMATopologyCell):

NUMA限制量单元,定义了NUMAcell内可以使用资源的最大限。

3)      class VirtNUMATopologyCellUsage(VirtNUMATopologyCell):

NUMA使用量单元,定义了NUMA cell内已使用的资源。

4)      class VirtNUMATopology(object):

NUMA拓扑单元,定义了NUMA 的基本数据成员,即cells[]

5)      class VirtNUMAInstanceTopology(VirtNUMATopology):

为guest VM提供NUMA相关的操作。

6)      class VirtNUMAHostTopology(VirtNUMATopology):

为Host提供NUMA相关的操作。

 

4、  openstack代码中,用户配置的NUMA参数,在创建VM时,是怎么被处理的?

1)      创建VM时,用户在image和flavor所配置的NUMA参数,随着创建VM的参数image_href和instance_type传入。


2)      在创建VM内部,有一步“参数校验”self._validate_and_build_base_options()的操作,该“参数校验”中,有一步操作会调用VirtNUMAInstanceTopology的方法获取到guestVM的NUMA拓扑,并将其保存在base_options变量中返回。

1>    参数校验:


2>    在“参数校验”中,获取guest VM的NUMA拓扑信息:


3>    将guest VM的NUMA拓扑信息,保存到base_options,最终返回:


3)      然后,创建VM函数,会将返回的base_options,通过self._provision_instances()方法更新到instance中。

1>    调用self._provision_instances()方法:


2>    _provision_instances()方法内部,将base_options更新到instance中:


4)      这样一来,用户配置的NUMA信息,就被保存到了instance中,在数据库instance_extra表中可以查到对应的信息,如下。


5)      当VM启动、恢复、迁移等需要用到NUMA信息时,就会调用到_get_guest_numa_config()方法(后续会讲到),通过该方法获取到对应VM所需要的NUMA配置。该方法内部,有一步,会从instance中,获取到对应的NUMA拓扑。

1>    _get_guest_numa_config()会调用self._get_cpu_numa_config_from_instance()方法获取guest VM的NUMA拓扑。

2>    然后,内部又会调用InstanceNUMATopology的方法(在/nova/objects/instance_numa_topology.py文件内)从instance中获取到NUMA拓扑,保存到一个重要的变量guest_cpu_numa(后续会讲到)中返回。


3>    InstanceNUMATopology中,从instance获取NUMA拓扑的具体函数。


 

5、  openstack代码中,获取guest VM的NUMA配置,并且匹配Host NUMA配置的具体流程和逻辑是什么?



二、How to use openstack NUMA function

(该部分以Flavor为例,对于image的配置,同样有效!)

 

一、自动平均分配NUMAcell

1、  在Dashboard中,创建Flavor,和元数据hw:numa_nodes和hw:numa_mempolicy,示例如下(这里创建的flavor名字叫“test_numa_by_num”,4 CPU,2G内存):


2、  根据此flavor,创建一个VM。示例如下(这里创建的VM名字为“numa_vm_1”):


3、  通过virsh命令,查看我们刚才创建的那个VM——“numa_vm_1”:



二、手动指定分配NUMAcell

1、  创建Flavor,和元数据hw:numa_nodes、hw:numa_mempolicy、hw:numa_cpus.0、hw:numa_cpus.1、hw:numa_mem.0、hw:numa_mem.1,并且设置cell_0的cpu为2-3,cell_1的CPU为0-1。示例如下(这里创建的flavor名字叫“test_numa_by_specify”,4 CPU,2G内存):


2、  根据此flavor,创建一个VM。示例如下(这里创建的VM名字为“numa_vm_2”):


3、  通过virsh命令,查看我们刚才创建的那个VM——“numa_vm_1”:


OpenStack对NUMA的支持情况(by quqi99)

作者:张华  发表于:2016-03-24版权声明:可以任意转载,转载时请务必以超链接形式标明文章原始出处和作者信息及本版权声明( http://blog.csdn.net/quqi99 )理论vCP...
  • quqi99
  • quqi99
  • 2016年03月26日 18:16
  • 3055

Openstack J版本 NUMA特性相关分析(一)

1、简介         Openstack在J版本中新增NUMA特性,用户可以通过将虚拟机只能的CPU和内存绑定到物理机的NUMA节点上来提升虚拟机的性能。 2、使用方式        NUMA...

Testing OpenStack NUMA (by quqi99)

作者:张华  发表于:2016-07-22版权声明:可以任意转载,转载时请务必以超链接形式标明文章原始出处和作者信息及本版权声明( http://blog.csdn.net/quqi99 )虚机模拟N...
  • quqi99
  • quqi99
  • 2016年07月22日 12:29
  • 2535

NUMA体系结构详解

由于OpenStack Kilo增加很多针对NUMA体系结构的增强功能,所以又重新温习了下NUMA相关的知识,简单做个笔记。   1. NUMA的几个概念(Node,socket,core,threa...

openstack中有关虚拟机cpu绑定总结

一.vcpu_pin_set: vcpu_pin_set是最早加入到openstack中的一个设计vcpu绑定概念的一个功能。它主要是用来解决这个问题: currently the instances...

openstack ironic standalone 方式部署

ironic的standalone部署测试

基于kvm+ovs+ryu构建一个SDN环境

基于kvm+ovs+ryu构建一个SDN环境
  • zhxym
  • zhxym
  • 2017年07月29日 16:19
  • 163

使用GetLogicalProcessorInformation获取逻辑处理器的详细信息(NUMA节点数、物理CPU数、CPU核心数、逻辑CPU数、各级Cache)

现在多核处理器已经很普及了,市场主流是双核处理器,还有4核、8核等高端产品。而且Intel推广了超线程技术(Hyper-Threading Technology, HTT),可以将一个物理核心模拟为两...
  • zyl910
  • zyl910
  • 2012年05月08日 18:13
  • 6465

高性能计算机的Numa、SMP、MPP架构技术特点分析

从系统架构来看,目前的商用服务器大体可以分为三类,即对称多处理器结构(SMP:Symmetric Multi-Processor),非一致存储访问结构(NUMA:Non-Uniform Memory ...

为什么linux物理内存还有很多,却开始使用swap? NUMA - 罪魁祸首

现在的机器上都是有多个CPU和多个内存块的。以前我们都是将内存块看成是一大块内存,所有CPU到这个共享内存的访问消息是一样的。这就是之前普遍使用的SMP模型。但是随着处理器的增加,共享内存可能会导致内...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:Openstack NUMA分析与使用
举报原因:
原因补充:

(最多只允许输入30个字)