关闭

Openstack NUMA分析与使用

标签: openstackNUMA
603人阅读 评论(0) 收藏 举报

一、Openstack NUMA analysis

1、  Openstack是否提供了NUMA的入口以供我们使用?

是的,已经提供了,并且可以正常使用。

 

2、  有哪些入口?

1)      Flavor

为Flavor添加元数据,即extra-specs,通过设置以下几种关键字:

hw:numa_nodes=NN                                    - VM中NUMA的个数

hw:numa_mempolicy=preferred|strict      - VM中 NUMA 内存的使用策略

hw:numa_cpus.0=<cpu-list>                      - VM 中在NUMA node 0的cpu

hw:numa_cpus.1=<cpu-list>                      - VM 中在NUMA node 1的cpu

hw:numa_mem.0=<ram-size>                   - VM 中在NUMA node 0的内存大小(M)

hw:numa_mem.1=<ram-size>                   -VM 中在NUMA node 1的内存大小(M)

2)      Image

为Image添加元数据,即Image的metadata,通过设置以下几种关键字:

hw_numa_nodes=NN                                  - numa of NUMA nodes to expose to theguest.

hw_numa_mempolicy=preferred|strict     - memory allocation policy

hw_numa_cpus.0=<cpu-list>                     - mapping of vCPUS N-M toNUMA node 0

hw_numa_cpus.1=<cpu-list>                     - mapping of vCPUS N-M toNUMA node 1

hw_numa_mem.0=<ram-size>                 - mapping N MB of RAM toNUMA node 0

hw_numa_mem.1=<ram-size>                 - mapping N MB of RAM toNUMA node 1

 

以下是openstack接口文档中对Flavordextra-specs 和image metadata所提供的接口截图,接口文档可在openstack官网获取。

 

 


3、  openstack代码中,处理NUMA的地方在哪里?

对NUMA相关数据的解析和处理,openstackJuno版本中,提供了以下class(在nova/virt/hardware.py文件中):

1)      class VirtNUMATopologyCell(object):

NUMA单元,定义了NUMA cell内的基本数据成员。

2)      class VirtNUMATopologyCellLimit(VirtNUMATopologyCell):

NUMA限制量单元,定义了NUMAcell内可以使用资源的最大限。

3)      class VirtNUMATopologyCellUsage(VirtNUMATopologyCell):

NUMA使用量单元,定义了NUMA cell内已使用的资源。

4)      class VirtNUMATopology(object):

NUMA拓扑单元,定义了NUMA 的基本数据成员,即cells[]

5)      class VirtNUMAInstanceTopology(VirtNUMATopology):

为guest VM提供NUMA相关的操作。

6)      class VirtNUMAHostTopology(VirtNUMATopology):

为Host提供NUMA相关的操作。

 

4、  openstack代码中,用户配置的NUMA参数,在创建VM时,是怎么被处理的?

1)      创建VM时,用户在image和flavor所配置的NUMA参数,随着创建VM的参数image_href和instance_type传入。


2)      在创建VM内部,有一步“参数校验”self._validate_and_build_base_options()的操作,该“参数校验”中,有一步操作会调用VirtNUMAInstanceTopology的方法获取到guestVM的NUMA拓扑,并将其保存在base_options变量中返回。

1>    参数校验:


2>    在“参数校验”中,获取guest VM的NUMA拓扑信息:


3>    将guest VM的NUMA拓扑信息,保存到base_options,最终返回:


3)      然后,创建VM函数,会将返回的base_options,通过self._provision_instances()方法更新到instance中。

1>    调用self._provision_instances()方法:


2>    _provision_instances()方法内部,将base_options更新到instance中:


4)      这样一来,用户配置的NUMA信息,就被保存到了instance中,在数据库instance_extra表中可以查到对应的信息,如下。


5)      当VM启动、恢复、迁移等需要用到NUMA信息时,就会调用到_get_guest_numa_config()方法(后续会讲到),通过该方法获取到对应VM所需要的NUMA配置。该方法内部,有一步,会从instance中,获取到对应的NUMA拓扑。

1>    _get_guest_numa_config()会调用self._get_cpu_numa_config_from_instance()方法获取guest VM的NUMA拓扑。

2>    然后,内部又会调用InstanceNUMATopology的方法(在/nova/objects/instance_numa_topology.py文件内)从instance中获取到NUMA拓扑,保存到一个重要的变量guest_cpu_numa(后续会讲到)中返回。


3>    InstanceNUMATopology中,从instance获取NUMA拓扑的具体函数。


 

5、  openstack代码中,获取guest VM的NUMA配置,并且匹配Host NUMA配置的具体流程和逻辑是什么?



二、How to use openstack NUMA function

(该部分以Flavor为例,对于image的配置,同样有效!)

 

一、自动平均分配NUMAcell

1、  在Dashboard中,创建Flavor,和元数据hw:numa_nodes和hw:numa_mempolicy,示例如下(这里创建的flavor名字叫“test_numa_by_num”,4 CPU,2G内存):


2、  根据此flavor,创建一个VM。示例如下(这里创建的VM名字为“numa_vm_1”):


3、  通过virsh命令,查看我们刚才创建的那个VM——“numa_vm_1”:



二、手动指定分配NUMAcell

1、  创建Flavor,和元数据hw:numa_nodes、hw:numa_mempolicy、hw:numa_cpus.0、hw:numa_cpus.1、hw:numa_mem.0、hw:numa_mem.1,并且设置cell_0的cpu为2-3,cell_1的CPU为0-1。示例如下(这里创建的flavor名字叫“test_numa_by_specify”,4 CPU,2G内存):


2、  根据此flavor,创建一个VM。示例如下(这里创建的VM名字为“numa_vm_2”):


3、  通过virsh命令,查看我们刚才创建的那个VM——“numa_vm_1”:


0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:611次
    • 积分:16
    • 等级:
    • 排名:千里之外
    • 原创:1篇
    • 转载:0篇
    • 译文:0篇
    • 评论:0条
    文章存档
    阅读排行