Hash表分析

Hash表中的一些原理/概念,及根据这些原理/概念:


一.       Hash表概念

二.       Hash构造函数的方法,及适用范围

三.       Hash处理冲突方法,各自特征

四.       Hash查找过程

五.       实现一个使用Hash存数据的场景-------Hash查找算法,插入算法

六.       JDK中HashMap的实现

七.       Hash表与HashMap的对比,性能分析

 

 一.    Hash表概念 

               在查找表中我们已经说过,在Hash表中,记录在表中的位置和其关键字之间存在着一种确定的关系。这样       我们就能预先知道所查关键字在表中的位置,从而直接通过下标找到记录。使ASL趋近与0.

 

              1)   哈希(Hash)函数是一个映象,即: 将关键字的集合映射到某个地址集合上,它的设置很灵活,只要这个地址集合的大小不超出允许范围即可;

             2)  由于哈希函数是一个压缩映象,因此,在一般情况下,很容易产生“冲突”现象,即: key1¹ key2,而  f (key1) = f(key2)。

              3).  只能尽量减少冲突而不能完全避免冲突,这是因为通常关键字集合比较大,其元素包括所有可能的关键字,而地址集合的元素仅为哈希表中的地址值

 

       在构造这种特殊的“查找表” 时,除了需要选择一个“好”(尽可能少产生冲突)的哈希函数之外;还需要找到一种“处理冲突” 的方法。

 

二 .     Hash构造函数的方法,及适用范围

  • 直接定址法
  • 数字分析法
  • 平方取中法
  • 折叠法
  • 除留余数法
  • 随机数法      

 

      (1)直接定址法:

                哈希函数为关键字的线性函数,H(key) = key 或者 H(key) = a ´ key + b

              此法仅适合于:地址集合的大小 = = 关键字集合的大小,其中a和b为常数。

     (2)数字分析法:

             假设关键字集合中的每个关键字都是由 s 位数字组成 (u1, u2, …, us),分析关键字集中的全体, 并从中提取分布均匀的若干位或它们的组合作为地址。

             此法适于:能预先估计出全体关键字的每一位上各种数字出现的频度。

     (3)平方取中法:

               以关键字的平方值的中间几位作为存储地址。求“关键字的平方值” 的目的是“扩大差别” ,同时平方值的中间各位又能受到整个关键字中各位的影响。

             此法适于:关键字中的每一位都有某些数字重复出现频度很高的现象。

     (4)折叠法:

            将关键字分割成若干部分,然后取它们的叠加和为哈希地址。两种叠加处理的方法:移位叠加:将分割后的几部分低位对齐相加;间界叠加:从一端沿分割界来回折叠,然后对齐相加。

            此法适于:关键字的数字位数特别多。

     (5)除留余数法:

             设定哈希函数为:H(key) = key MOD p   ( p≤m ),其中, m为表长,p 为不大于 m 的素数,或是不含 20 以下的质因子

     (6)随机数法:

           设定哈希函数为:H(key) = Random(key)其中,Random 为伪随机函数

           此法适于:对长度不等的关键字构造哈希函数。

 

         实际造表时,采用何种构造哈希函数的方法取决于建表的关键字集合的情况(包括关键字的范围和形态),以及哈希表    长度(哈希地址范围),总的原则是使产生冲突的可能性降到尽可能地小。

三.       Hash处理冲突方法,各自特征

 “处理冲突” 的实际含义是:为产生冲突的关键字寻找下一个哈希地址。

  •   开放定址法
  •   再哈希法
  •   链地址法

      (1)开放定址法:

               为产生冲突的关键字地址 H(key) 求得一个地址序列: H0, H1, H2, …, Hs  1≤s≤m-1,Hi = ( H(key)+di  ) MOD m,其中: i=1, 2, …, s,H(key)为哈希函数;m为哈希表长;

 

      (2)链地址法:


             将所有哈希地址相同的记录都链接在同一链表中。

 

      (3)再哈希法:

               方法:构造若干个哈希函数,当发生冲突时,根据另一个哈希函数计算下一个哈希地址,直到冲突不再发生。即:Hi=Rhi(key)     i=1,2,……k,其中:Rhi——不同的哈希函数,特点:计算时间增加



 四.       Hash查找过程

        对于给定值 K,计算哈希地址 i = H(K),若 r[i] = NULL  则查找不成功,若 r[i].key = K  则查找成功, 否则 “求下一地址 Hi” ,直至r[Hi] = NULL  (查找不成功)  或r[Hi].key = K  (查找成功) 为止。

 

 五.       实现一个使用Hash存数据的场景-------Hash查找算法,插入算法

         假设我们要设计的是一个用来保存在校学生个人信息的数据表。因为在校学生数量也不是特别巨大(8W?),每个学生的学号是唯一的,因此,我们可以简单的应用直接定址法,声明一个10W大小的数组,每个学生的学号作为主键。然后每次要添加或者查找学生,只需要根据需要去操作即可。

      但是,显然这样做是很脑残的。这样做系统的可拓展性和复用性就非常差了,比如有一天人数超过10W了?如果是用来保存别的数据呢?或者我只需要保存20条记录呢?声明大小为10W的数组显然是太浪费了的。

 

     如果我们是用来保存大数据量(比如银行的用户数,4大的用户数都应该有3-5亿了吧?),这时候我们计算出来的HashCode就很可能会有冲突了, 我们的系统应该有“处理冲突”的能力,此处我们通过挂链法“处理冲突”

 

     如果我们的数据量非常巨大,并且还持续在增加,如果我们仅仅只是通过挂链法来处理冲突,可能我们的链上挂了上万个数据后,这个时候再通过静态搜索来查找链表,显然性能也是非常低的。所以我们的系统应该还能实现自动扩容,当容量达到某比例后,即自动扩容,使装载因子保存在一个固定的水平上



什么时候ReHash

在介绍HashMap的内部实现机制时提到了两个参数,DEFAULT_INITIAL_CAPACITY和DEFAULT_LOAD_FACTOR,DEFAULT_INITIAL_CAPACITY是table数组的容量,DEFAULT_LOAD_FACTOR则是为了最大程度避免哈希冲突,提高HashMap效率而设置的一个影响因子,将其乘以DEFAULT_INITIAL_CAPACITY就得到了一个阈值threshold,当HashMap的容量达到threshold时就需要进行扩容,这个时候就要进行ReHash操作了,可以看到下面addEntry函数的实现,当size达到threshold时会调用resize函数进行扩容。

void addEntry(int hash, K key, V value, int bucketIndex) {  
ntry<K,V> e = table[bucketIndex];  
      table[bucketIndex] = new Entry<K,V>(hash, key, value, e);  
      if (size++ >= threshold)  
          resize(2 * table.length);  
  }  

在扩容的过程中需要进行ReHash操作,而这是非常耗时的,在实际中应该尽量避免。




 

Bloom Filter概念和原理

 

Bloom Filter是一种空间效率很高的随机数据结构,它利用位数组很简洁地表示一个集合,并能判断一个元素是否属于这个集合。Bloom Filter的这种高效是有一定代价的:在判断一个元素是否属于某个集合时,有可能会把不属于这个集合的元素误认为属于这个集合(false positive)。因此,Bloom Filter不适合那些“零错误”的应用场合。而在能容忍低错误率的应用场合下,Bloom Filter通过极少的错误换取了存储空间的极大节省。


集合表示和元素查询

下面我们具体来看Bloom Filter是如何用位数组表示集合的。初始状态时,Bloom Filter是一个包含m位的位数组,每一位都置为0

为了表达S={x1, x2,…,xn}这样一个n个元素的集合,Bloom Filter使用k个相互独立的哈希函数(Hash Function),它们分别将集合中的每个元素映射到{1,…,m}的范围中。对任意一个元素x,第i个哈希函数映射的位置hi(x)就会被置为11ik)。注意,如果一个位置多次被置为1,那么只有第一次会起作用,后面几次将没有任何效果。在下图中,k=3,且有两个哈希函数选中同一个位置(从左边数第五位)。   

 

在判断y是否属于这个集合时,我们对y应用k次哈希函数,如果所有hi(y)的位置都是11ik),那么我们就认为y是集合中的元素,否则就认为y不是集合中的元素。下图中y1就不是集合中的元素。y2或者属于这个集合,或者刚好是一个false positive



错误率估计

前面我们已经提到了,Bloom Filter在判断一个元素是否属于它表示的集合时会有一定的错误率(false positive rate),下面我们就来估计错误率的大小。在估计之前为了简化模型,我们假设kn<m且各个哈希函数是完全随机的。当集合S={x1, x2,…,xn}的所有元素都被k个哈希函数映射到m位的位数组中时,这个位数组中某一位还是0的概率是:

其中1/m表示任意一个哈希函数选中这一位的概率(前提是哈希函数是完全随机的),(1-1/m)表示哈希一次没有选中这一位的概率。要把S完全映射到位数组中,需要做kn次哈希。某一位还是0意味着kn次哈希都没有选中它,因此这个概率就是(1-1/m)的kn次方。令p = e-kn/m是为了简化运算,这里用到了计算e时常用的近似:

 

令ρ为位数组中0的比例,则ρ的数学期望E(ρ)= p’。在ρ已知的情况下,要求的错误率(false positive rate)为:

(1-ρ)为位数组中1的比例,(1-ρ)k就表示k次哈希都刚好选中1的区域,即false positive rate。上式中第二步近似在前面已经提到了,现在来看第一步近似。p’只是ρ的数学期望,在实际中ρ的值有可能偏离它的数学期望值。M. Mitzenmacher已经证明[2] ,位数组中0的比例非常集中地分布在它的数学期望值的附近。因此,第一步的近似得以成立。分别将pp’代入上式中,得:

   

   

相比p’f’,使用pf通常在分析中更为方便。


最优的哈希函数个数

既然Bloom Filter要靠多个哈希函数将集合映射到位数组中,那么应该选择几个哈希函数才能使元素查询时的错误率降到最低呢?这里有两个互斥的理由:如果哈希函数的个数多,那么在对一个不属于集合的元素进行查询时得到0的概率就大;但另一方面,如果哈希函数的个数少,那么位数组中的0就多。为了得到最优的哈希函数个数,我们需要根据上一小节中的错误率公式进行计算。

 

先用pf进行计算。注意到f = exp(k ln(1 − e−kn/m)),我们令g = k ln(1 − e−kn/m),只要让g取到最小,f自然也取到最小。由于p = e-kn/m,我们可以将g写成

根据对称性法则可以很容易看出当p = 1/2,也就是k = ln2· (m/n)时,g取得最小值。在这种情况下,最小错误率f等于(1/2) (0.6185)m/n。另外,注意到p是位数组中某一位仍是0的概率,所以p = 1/2对应着位数组中0和1各一半。换句话说,要想保持错误率低,最好让位数组有一半还空着。

 

需要强调的一点是,p = 1/2时错误率最小这个结果并不依赖于近似值pf。同样对于f’ = exp(k ln(1 − (1 − 1/m)kn))g’ = k ln(1 − (1 − 1/m)kn)p’ = (1 − 1/m)kn,我们可以将g’写成

同样根据对称性法则可以得到当p’ = 1/2时,g’取得最小值。、


位数组的大小

下面我们来看看,在不超过一定错误率的情况下,Bloom Filter至少需要多少位才能表示全集中任意n个元素的集合。假设全集中共有u个元素,允许的最大错误率为є,下面我们来求位数组的位数m

 

假设X为全集中任取n个元素的集合,F(X)是表示X的位数组。那么对于集合X中任意一个元素x,在s = F(X)中查询x都能得到肯定的结果,即s能够接受x。显然,由于Bloom Filter引入了错误,s能够接受的不仅仅是X中的元素,它还能够є (u - n)false positive。因此,对于一个确定的位数组来说,它能够接受总共n + є (u - n)个元素。在n + є (u - n)个元素中,s真正表示的只有其中n个,所以一个确定的位数组可以表示

个集合。m位的位数组共有2m个不同的组合,进而可以推出,m位的位数组可以表示

   

个集合。全集中n个元素的集合总共有

   

个,因此要让m位的位数组能够表示所有n个元素的集合,必须有

   

即:

   

上式中的近似前提是nєu相比很小,这也是实际情况中常常发生的。根据上式,我们得出结论:在错误率不大于є的情况下,m至少要等于n log2(1/є)才能表示任意n个元素的集合。

 

上一小节中我们曾算出当k = ln2· (m/n)时错误率f最小,这时f = (1/2)= (1/2)mln2 / n。现在令fє,可以推出

这个结果比前面我们算得的下界n log2(1/є)大了log 1.44倍。这说明在哈希函数的个数取到最优时,要让错误率不超过єm至少需要取到最小值的1.44倍。


总结

在计算机科学中,我们常常会碰到时间换空间或者空间换时间的情况,即为了达到某一个方面的最优而牺牲另一个方面。Bloom Filter在时间空间这两个因素之外又引入了另一个因素:错误率。在使用Bloom Filter判断一个元素是否属于某个集合时,会有一定的错误率。也就是说,有可能把不属于这个集合的元素误认为属于这个集合(False Positive),但不会把属于这个集合的元素误认为不属于这个集合(False Negative)。在增加了错误率这个因素之后,Bloom Filter通过允许少量的错误来节省大量的存储空间。

 

自从Burton Bloom70年代提出Bloom Filter之后,Bloom Filter就被广泛用于拼写检查和数据库系统中。近一二十年,伴随着网络的普及和发展,Bloom Filter在网络领域获得了新生,各种Bloom Filter变种和新的应用不断出现。可以预见,随着网络应用的不断深入,新的变种和应用将会继续出现,Bloom Filter必将获得更大的发展。


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值