
数据挖掘-机器学习-推荐
zhangxinrun_业余erlang
这个作者很懒,什么都没留下…
展开
-
开源搜索项目-倒排索引代码解析(一)
转载:http://www.mingyuanfeng.co.cc/search/label/%E5%80%92%E6%8E%92%E7%B4%A2%E5%BC%95%EF%BC%8C%E5%BC%80%E6%BA%90%EF%BC%8C%E6%90%9C%E7%B4%A2%E5%BC%95%E6%93%8E搜索引擎的底层索引使用一种叫“倒排索引”(inverted index)的索转载 2012-03-31 16:08:55 · 6564 阅读 · 0 评论 -
Spark MLlib系列(一):入门介绍
转载:http://blog.csdn.net/shifenglov/article/details/43762705前言最新的情况是国内BAT已经都上了spark,而且spark在hadoop上的应用,大有为大象插上翅膀的效果。个人估计在未来两到三年,spark大有代替hadoop的mapreduce的趋势。应该说spark的在使用上面的经济成本,性能优势,一站式解决转载 2017-06-26 08:42:00 · 1100 阅读 · 0 评论 -
方差、标准差、均方差、均方误差区别总结
转载: http://blog.csdn.net/Leyvi_Hsing/article/details/54022612一、百度百科上方差是这样定义的: (variance)是在概率论和统计方差衡量随机变量或一组数据时离散程度的度量。概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。统计中的方差(样本方差)是各个数据分别与其平均数之差的平方的和的平转载 2017-06-26 08:36:11 · 9057 阅读 · 0 评论 -
大数据用户画像方法与实践(干货 转帖)
http://www.cnblogs.com/cescyang/p/6017608.html在大数据时代,机器要学会从比特流中解读用户,构建用户画像就变得尤其重要。本文介绍了用户画像的理论和实践,以及在实际中的应用。如何根据用户画像进行精准营销?将用户画像应用于个性化推荐?一起来寻找答案吧~首先看一下大数据与应用画像的关系,现在大数据是炙手可热,相信大家对大数据的四个V转载 2017-06-23 08:23:30 · 2351 阅读 · 0 评论 -
浅谈矩阵分解在推荐系统中的应用
转载:http://blog.csdn.net/sun_168/article/details/20637833 推荐系统是当下越来越热的一个研究问题,无论在学术界还是在工业界都有很多优秀的人才参与其中。近几年举办的推荐系统比赛更是一次又一次地把推荐系统的研究推向了高潮,比如几年前的Neflix百万大奖赛,KDD CUP 2011的音乐推荐比赛,去年的百度电影推荐竞赛,还有最近转载 2017-06-22 07:30:01 · 1142 阅读 · 0 评论 -
LSM-tree 一种高效的索引数据结构
转载:http://bofang.iteye.com/blog/1676698论文 The Log-Structure Merge-Tree(LSM-tree)(http://www.google.com.my/url?sa=t&rct=j&q=&esrc=s&source=web&cd=4&cad=rja&ved=0CDoQFjAD&url=http%3A%2F%2Fcite转载 2012-11-13 14:11:48 · 6379 阅读 · 0 评论 -
推荐引擎(豆瓣迅雷等大站核心功能之一)easyrec半天学习分享
转载:http://hi.baidu.com/rainfling/blog/item/faa6cd8aaa913fc9fc1f1063.html利用easyrec,你可以在数分钟内讲推荐引擎加入你自己的网站,而easyrec是一个开源项目,正在迅速发展。如果你想了解 推荐引擎和easyrec,请访问这里:http://01404421.iteye.com/blog/113135转载 2012-05-10 18:25:35 · 2551 阅读 · 0 评论 -
推荐《用Python进行自然语言处理》中文翻译-NLTK配套书
转载:http://www.52nlp.cn/%E6%8E%A8%E8%8D%90%EF%BC%8D%E7%94%A8python%E8%BF%9B%E8%A1%8C%E8%87%AA%E7%84%B6%E8%AF%AD%E8%A8%80%E5%A4%84%E7%90%86%EF%BC%8D%E4%B8%AD%E6%96%87%E7%BF%BB%E8%AF%91-nltk%E9%85%8D%E5%转载 2012-05-01 13:14:02 · 2917 阅读 · 0 评论 -
中文分词之最大匹配
转载:http://apps.hi.baidu.com/share/detail/15014495中文分词在中文信息处理中是最最基础的,无论机器翻译亦或信息检索还是其他相关应用,如果涉及中文,都离不开中文分词,因此中文分词具有极高的地 位。中文分词入门最简单应该是最大匹配法了,当年师兄布置给我的第一个学习任务就是实现最大匹配 法的分词算法(正向、逆向)。记得当时对自己参考学习最有帮转载 2012-05-01 13:11:57 · 3111 阅读 · 0 评论 -
协同过滤
转载:http://baike.baidu.com/view/981360.htm电子商务推荐系统的一种主要算法。 协同过滤推荐(Collaborative Filtering recommendation)是在信息过滤和信息系统中正迅速成为一项很受欢迎的技术。与传统的基于内容过滤直接分析内容进行推荐不同,协同过滤分析用户兴趣,在用户群中找到指定用户的相似(兴趣)用户,综合这些转载 2012-03-19 16:45:29 · 2047 阅读 · 0 评论 -
Spark MLlib系列(二):基于协同过滤的电影推荐系统
转载:http://blog.csdn.net/shifenglov/article/details/43795597前言随着大数据时代的到来,数据当中挖取金子的工作越来越有吸引力。利用Spark在内存迭代运算、机器学习领域强悍性能的优势,使用spark处理数据挖掘问题就显得很有实际价值。这篇文章给大家分享一个spark MLlib 的推荐实战例子。我将会分享怎样用spar转载 2017-06-26 08:43:13 · 1411 阅读 · 0 评论