低秩矩阵恢复在机器视觉中的理解-- Sparse Representation based on Low-Rank Dictionary Learning

转载 2014年12月30日 11:49:39

http://blog.csdn.net/smilebluesky/article/details/41147113


最近看论文,无意中发现低秩矩阵感觉很给力,所以看了几篇低秩矩阵的论文,总结一下。

1.Sparse Representation for Fa ce Recognition based on Discriminative Low-Rank Dictionary Learning

a解决的问题:在有噪声的图片下进行人脸识别

b前人工作:以前的算法主要是基于训练样本学习的字典来重构信号,这种方法对干净的信号或者只有少量噪声的信号效果好。

  C.解决方案:

  如果损坏的像素可以被分离那么就很有利于分类和重构了。回忆数学中,如果矩阵A的每个列是来自于同一模式的,那么我们就说他们是线性相关,也就是说矩阵A是低秩的。所以如果矩阵A被稀疏噪声污染了,我们就可以利用最小化秩通过分离噪声E来恢复矩阵A了。(为什么字典是低秩的)

   基于上述思想就把最小化秩的思想整合到了稀疏表示中。算法分离噪声的同时优化字典的原子来重构去噪的信号。

如果样本有污染的话,低秩性会很容易被破坏,所以需要加入一个E来近似代表稀疏错误。


因为本文中的字典是可区分的,所以把子字典的可区分性(discriminative power)表示为下面两层意思字典Di能够很好的表示Yi   (也就是说Yi=DiXi,i+Ei)第二层意思就是来自第j类的样本他的系数Xj,i(第j类样本Yj对应于第i类字典Di的系数)接近于0(等同于是非常小的,即字典Di和样本Yj相关性若弱)



训练和测试的时候都污染的图片

d.实验结果


DLRD_SR的方法比FDDL平均有4%的提升。

采用本方法的优点:

a.训练样本中的稀疏噪声被更正了,保证了字典中的原子可以最优到纯净的

b.字典是用有区分的方法来学习的使得提出的模型更利于识别

c.和RPCA相比字典的优化是在稀疏表示的框架下的,某一类中的相似度提高了,结构加强了来去除稀疏的噪声,字典原子被优化到更好的适用于稀疏表示


低秩矩阵恢复在机器视觉中的理解-- Sparse Representation based on Low-Rank Dictionary Learning

最近看论文,无意中发现低秩矩阵感觉很给力,
  • smilebluesky
  • smilebluesky
  • 2014年11月15日 16:41
  • 2275

低秩矩阵在机器视觉中的理解--Low-Rank representations

阅读论文Learning Structured Low-rank Representations for Image Classification 1.
  • smilebluesky
  • smilebluesky
  • 2014年11月15日 23:04
  • 7162

稀疏表示综述:A Survey of Sparse Representation: Algorithms and Applications_2015(2)

稀疏表示综述:A Survey of Sparse Representation: Algorithms and Applications_2015(2) 本文地址:http://blog.csdn...
  • shanglianlm
  • shanglianlm
  • 2015年07月22日 20:14
  • 3682

笔记:Semi-Supervised Low-Rank Representation for Image Classification

本文是这篇 SIViP 期刊论文的笔记,主要是对文中的理论方法进行展开详解。本人学术水平有限,文中如有错误之处,敬请指正。...
  • xueshengke
  • xueshengke
  • 2017年02月18日 22:05
  • 752

基于稀疏表示的分类方法 Sparse Representation based Classification Method

文章来源 Jia K, Chan T H, Ma Y. Robust and practical face recognition via structured sparsity[J]. Comput...
  • JYZhang_CVML
  • JYZhang_CVML
  • 2017年09月02日 20:44
  • 647

[CVPR2017]CFNet_End-to-end representation learning for Correlation Filter based tracking

CFNet是KCF的作者2017年最新的提出的目标跟踪算法,发表于CVPR2017,非常值得一读。 原文地址:https://arxiv.org/abs/1704.06036v1 工程地址:htt...
  • cuclxt
  • cuclxt
  • 2017年05月15日 22:56
  • 3190

Dictionary Learning Tools for Matlab

Dictionary Learning Tools for Matlab. Karl Skretting, University of Stavanger. C...
  • alec1987
  • alec1987
  • 2012年05月22日 10:38
  • 2373

在线字典学习(Online dictionary learning for sparse coding)-机器学习

稀疏编码—将数据向量建模为基向量的线性组合,大量地应用于机器学习、神经科学、信号处理及统计学。这篇文章主要学习基向量也就是字典使之适应特定数据,在声音、图像处理领域信号重构与分类是一种近来被证明非常有...
  • u010545732
  • u010545732
  • 2014年01月09日 13:18
  • 5213

Efficient Learning of Sparse Representations with an Energy-based Mode摘要

2006_Efficient Learning of Sparse Representations with an Energy-based Model 此文也是Deep learning三...
  • Evan123mg
  • Evan123mg
  • 2014年10月16日 17:22
  • 1876

[CV论文读讲] sparse coding稀疏表达论文列表

http://blog.sciencenet.cn/blog-4099-638754.html 1 What is the Goal of Sensory Coding:   介绍了两种s...
  • lansatiankongxxc
  • lansatiankongxxc
  • 2014年04月16日 10:25
  • 1438
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:低秩矩阵恢复在机器视觉中的理解-- Sparse Representation based on Low-Rank Dictionary Learning
举报原因:
原因补充:

(最多只允许输入30个字)