数据结构(Java)——递归

原创 2015年11月18日 20:15:04

回忆的伤,挂在窗;曾经的梦,太忧伤。

1.递归的入门学习

    递归是一种功能强大的编程技术,能为某些问题提供优雅的解决方案。在各种数据结构的实现以及数据的查找和排序的处理中,递归特别有用。
    递归是一种编程技术,它利用一个方法来调用自身来满足整个作用。能够递归编程取决于能否递归的思考。
    任何递归定义都必须有一个非递归部分,这个非递归部分称为基本情形,它使得递归最终会终止。
    数学和数学公式常常会递归的表示。深刻理解递归,对于编程和解决一些逻辑上直接求解十分复杂的问题十分有效。

2.递归编程

举例说明:一个累加过程的java递归算法的实现。

package ds.java.ch08;
/** 
 * @author LbZhang
 * @version 创建时间:2015年11月18日 下午8:17:07 
 * @description 类说明
 */
public class SUMTest {
    public int sum(int num){
        int result=0;
        if(num==1){
            result=1;
        }else{
            result=num+sum(num-1);
        }
        return result;
    }

    public static void main(String[] args) {
        SUMTest sumt= new SUMTest();
        int sum=sumt.sum(10);
        System.out.println(sum);
    }

}

递归和迭代,递归是某些问题优雅恰当的解决方式,但是在某些问题中使用递归没有迭代显得直观。
所有问题都可以使用迭代解决,不过有些情况下使用递归太复杂了。
递归可以分为直接递归和间接递归。

3.递归的使用

3.1使用递归解决迷宫问题

/**
     * 递归的方式发现迷宫路径
     * @param row
     * @param column
     * @return
     */
    public boolean recursionTrvaverse(int row, int column) {

        boolean done = false;

        if (maze.valid(row, column)) {

            maze.tryPosition(row, column);///先表示当前的结点已经遍历

            if (row == maze.getRows() - 1 && column == maze.getColumns() - 1) {
                done = true; // the maze is solved
            } else {
                done = recursionTrvaverse(row + 1, column);// down
                if (!done) {
                    done = recursionTrvaverse(row, column + 1);// right
                }
                if (!done) {
                    done = recursionTrvaverse(row - 1, column);// up
                }
                if (!done) {
                    done = recursionTrvaverse(row, column - 1);// left
                }
            }
            //在正确的遍历路线上面能够形成一条路径
            if (done)
                maze.makePath(row, column);

        }

        return done;
    }

3.2使用递归解决汉诺塔问题

package ds.java.ch08;

/**
 * @author LbZhang
 * @version 创建时间:2015年11月18日 下午10:37:48
 * @description 汉诺塔类的核心实现
 * 
 */
public class TowersOfHanoi {

    private int totalDisks;// 盘子个数

    /**
     * Sets up the puzzle with the specified number of disks.
     * 
     * @param disks
     *            the number of disks
     */
    public TowersOfHanoi(int disks) {
        totalDisks = disks;
    }

    /**
     * Performs the initial call to moveTower to solve the puzzle. Moves the
     * disks from tower 1 to tower 3 using tower 2.
     */
    public void solve() {
        //借用2 从1 移动到3
        moveTower(totalDisks, 1, 3, 2);
    }

    /**
     * Moves the specified number of disks from one tower to another by moving a
     * subtower of n-1 disks out of the way, moving one disk, then moving the
     * subtower back. Base case of 1 disk.
     * 
     * @param numDisks
     *            the number of disks to move
     * @param start
     *            the starting tower
     * @param end
     *            the ending tower
     * @param temp
     *            the temporary tower
     */
    private void moveTower(int numDisks, int start, int end, int temp) {
        if (numDisks == 1)
            moveOneDisk(start, end);
        else {
            //将n-1个移动到辅助柱子
            moveTower(numDisks - 1, start, temp, end);
             //将第n个盘子从起始柱子 移动到 最终柱子
            moveOneDisk(start, end);
            //将n-1个从辅助柱子移动到目的柱子
            moveTower(numDisks - 1, temp, end, start);
        }
    }

    /**
     * Prints instructions to move one disk from the specified start tower to
     * the specified end tower.
     * 
     * @param start
     *            the starting tower
     * @param end
     *            the ending tower
     */
    private void moveOneDisk(int start, int end) {
        System.out.println("Move one disk from " + start + " to " + end);
    }

}

4.递归算法分析

递归算法的算法分析:在分析循环的时候,我们先判定循环体的序,然后再乘以该循环的执行次数。分析递归算法也用类似的思路。先判定递归的序(遵循递归定义的次数),再乘以递归方法体的序。

以计算整数累加(从1累加到某个正数)的递归方法为例。

public int sum(int num){
        int result=0;
        if(num==1){
            result=1;
        }else{
            result=num+sum(num-1);
        }
        return result;
    }

递归的方法体执行了一次加法计算其复杂度为O(1)。
每次调用递归算法时,num的值都会递减1,因此,这个递归方法被调用num次,因此递归的序为O(n)。

版权声明:本文为博主原创文章,未经博主允许不得转载。

数据结构与算法分析(Java语言描述)(15)—— 二分查找(递归与非递归)

非递归int find(int[] arr, int target){ int l=0, r=arr.length-1; while(l target) r = mid-1;

【数据结构与算法】汉诺塔算法——C语言递归实现

汉诺塔的递归实现算法,将A中的圆盘借助B圆盘完全移动到C圆盘上, 每次只能移动一个圆盘,并且每次移动时大盘不能放在小盘上面 递归函数的伪算法为如下: if(n == 1)    直接将A柱子上的圆盘从...

数据结构与算法(1)——递归和回溯

本人最近开始复习数据结构与算法,在此记录学习内容,希望自己能有进步。。...

数据结构与算法分析笔记(4)——递归

简单来说,递归(recursion)就是程序简单调用自身的技巧。一个过程或函数在其定义或说明中有直接或间接调用自身的一种方法,它通常把一个大型复杂的问题层层转化为一个与原问题相似的规模较小的问题来求解...
  • etdeng
  • etdeng
  • 2014年11月15日 19:58
  • 291

数据结构面试之六——二叉树的常见操作2(非递归遍历&二叉排序树)

数据结构面试之六——二叉树的常见操作2(非递归遍历&二叉排序树) 题注:《面试宝典》有相关习题,但思路相对不清晰,排版有错误,作者对此参考相关书籍和自己观点进行了重写,供大家参考。 六、二叉树的基...

JS手撸数据结构系列(三) ——子序列、幂集与递归

穷举所有子序列当时的情况是这样的,本来想用最蠢的方法写LCS(最长公共子序列),穷举A、B的所有子序列,然后循环O(n2)O(n^2)比较逐一比较…… 于是问题就来了。如何穷举所有子序列….似乎也不...
  • scargtt
  • scargtt
  • 2017年04月24日 12:45
  • 351

数据结构——八皇后问题递归代码实现

Reference Book: 《Data Structures and Program Design in C++》 ---------------------------------------...

数据结构——递归

一、递归的一般定义        所谓递归,通俗来说就是函数自己调用自己的过程,但是要明确的一点是,递归一定要有自己的出口,要不然就会陷入一种“无法自拔”的境地!!! 二、递归的用处      ...

数据结构面试之六——二叉树的常见操作2(非递归遍历&二叉排序树)

数据结构面试之六——二叉树的常见操作2(非递归遍历&二叉排序树) 题注:《面试宝典》有相关习题,但思路相对不清晰,排版有错误,作者对此参考相关书籍和自己观点进行了重写,供大家参考。 六、二...
  • mark555
  • mark555
  • 2014年03月08日 10:08
  • 699
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:数据结构(Java)——递归
举报原因:
原因补充:

(最多只允许输入30个字)