ML—常见的特征提取方法

原创 2015年11月20日 11:35:07

华电北风吹
日期:2015/11/20

特征提取不同于特征选择,特征提取是利用原有的特征根据一定的算法提取出原始特征中包含的抽象特征。

一、PCA(主成分分析)
PCA的是一种无监督的特征降维方法。确切来说,PCA不是一种特征降维方法,PCA一次寻找一组正交的映射空间,并且使得能够在这个映射空间上方差最大。

二、MDS(Muli-demision scaling)
MDS也是一种无监督的特征映射方法。MDS建立一个原始高维输入空间样本到低维特征空间样本的一一映射,建立的原则是在输入空间距离近的样本在低维特征空间的距离也要近。

三、Isomap
Isomap基于MDS。Isomap通过计算最段路径利用MDS进行降维。在利用Isomap的时候可以有两种方法确定原始输入空间样本之间知否有路径:一是设置阀值,两样本之间距离小于阀值的就认为是有边;另一种是设置邻居节点个数k,认为每个节点都与与它最近的k个样本之间存在边。

四、LLE
LLE是局部化模型,通过对节点的临域建立OLS回归模型,然后根据OLS的权重构建特征空间样本。

五、SVD
奇异值分解也可以作为矩阵特征的特征降维,具体参考svd相关部分解释。

在这里介绍一个比较好的基于matlab的特征降维工具包,本文的降维方法可以通过matlab特征降维工具包实现
工具包下载地址:http://lvdmaaten.github.io/drtoolbox/

版权声明:本文为博主原创文章,未经博主允许不得转载。

特征提取的方法

机器学习系列:(三)特征提取与处理      特征提取与处理   上一章案例中的解释变量都是数值,比如匹萨的直接。而很多机器学习问题需要研究的对象可能是分类变...

图像特征提取与特征选择基本方法总结

图像特征的提取和选择是图像处理过程中很重要的环节,对后续图像分类有着重要的影响,并且对于图像数据具有样本少,维数高的特点,要从图像中提取有用的信息,必须对图像特征进行降维处理,特征提取与特征选择就是最...

特征选择与特征抽取

特征抽取和特征选择是DimensionalityReduction(降维)两种方法,但是这两个有相同点,也有不同点之处: 1. 概念: 特征抽取(Feature Extraction)...

图像特征特点及其常用的特征提取与匹配方法

常用的图像特征有颜色特征、纹理特征、形状特征、空间关系特征。 一 颜色特征 (一)特点:颜色特征是一种全局特征,描述了图像或图像区域所对应的景物的表面性质。一般颜色特征是基于像素点的特征,此时所有...

第二章 面向对象的编程风格(如何编写函数)

2.1  如何编写函数   fibonacci函数:1 1 2 3 5 8 13 21...... 程序:编写一个函数 该函数返回fibonacci数列中由用户指定的某个位置的元素。例如用户可以询问f...

ML—常见的特征选择方法

华电北风吹 天津大学认知计算与应用重点实验室 日期:2015/11/20在统计分析中,由于事先并不知道什么特征与这个模式相关,而特征对能否正确分类又起到至关重要的作用,因此特征选择是统计学习中...

[ML with Sklearn]特征提取与处理

①分类变量特征提取 分类变量通常用独热编码(One-of-K or One-Hot Encoding),通过二进制来表示每个自变量特征。 例如,假设city变量有三个值:New York, San F...

文本分类—特征提取研究

  • 2010年12月29日 13:08
  • 262KB
  • 下载

灰度共生矩阵及特征提取—OpenCV

因为OpenCV中自带的灰度共生矩阵的计算使用过程中,经常出现问题;之前在项目中使用了别人基于OpenCV重新编写cl_texture的灰度共生矩阵,但该代码只能在MFC环境下使用,且不能释放内存;现...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:ML—常见的特征提取方法
举报原因:
原因补充:

(最多只允许输入30个字)