zoj 1041 Transmitters

ZOJ Problem Set - 1041
Transmitters

Time Limit: 2 Seconds      Memory Limit: 65536 KB

In a wireless network with multiple transmitters sending on the same frequencies, it is often a requirement that signals don't overlap, or at least that they don't conflict. One way of accomplishing this is to restrict a transmitter's coverage area. This problem uses a shielded transmitter that only broadcasts in a semicircle.

A transmitter T is located somewhere on a 1,000 square meter grid. It broadcasts in a semicircular area of radius r. The transmitter may be rotated any amount, but not moved. Given N points anywhere on the grid, compute the maximum number of points that can be simultaneously reached by the transmitter's signal. Figure 1 shows the same data points with two different transmitter rotations.

All input coordinates are integers (0-1000). The radius is a positive real number greater than 0. Points on the boundary of a semicircle are considered within that semicircle. There are 1-150 unique points to examine per transmitter. No points are at the same location as the transmitter.

Input consists of information for one or more independent transmitter problems. Each problem begins with one line containing the (x,y) coordinates of the transmitter followed by the broadcast radius, r. The next line contains the number of points N on the grid, followed by N sets of (x,y) coordinates, one set per line. The end of the input is signalled by a line with a negative radius; the (x,y) values will be present but indeterminate. Figures 1 and 2 represent the data in the first two example data sets below, though they are on different scales. Figures 1a and 2 show transmitter rotations that result in maximal coverage.

For each transmitter, the output contains a single line with the maximum number of points that can be contained in some semicircle.

Example input:

25 25 3.5
7
25 28
23 27
27 27
24 23
26 23
24 29
26 29
350 200 2.0
5
350 202
350 199
350 198
348 200
352 200
995 995 10.0
4
1000 1000
999 998
990 992
1000 999
100 100 -2.5


Example output:

3
4
4

主要要有向量的思想,把小于半径的点存下,其余的都不要

//

#include<stdio.h>
struct point
{
	int x,y;
}p[200];
int dis(int x,int y,int x0,int y0)
{
	return (x-x0)*(x-x0)+(y-y0)*(y-y0);
}
int main()
{
	int x,y,x0,y0;
	double r;
	int i,j,k;
	int n,max,ans;
	while(scanf("%d%d%lf",&x,&y,&r)!=EOF)
	{
		if(r<=0)
			break;
		scanf("%d",&n);
		k=0;
		for(i=0;i<n;i++)
		{
			scanf("%d%d",&x0,&y0);
			if(dis(x,y,x0,y0)<=r*r)
			{
				p[k].x=x0;
				p[k].y=y0;
				k++;
			}
		}
		if(k<=1)
		{
			printf("%d\n",k);
			continue;
		}
		max=0;
		for(i=0;i<k;i++)
		{
			ans=0;
			for(j=0;j<k;j++)
			{
				if((p[i].x-x)*(p[j].y-y)-(p[j].x-x)*(p[i].y-y)>=0)//向量叉积
					ans++;
			}
			if(max<ans)
				max=ans;
		}
		printf("%d\n",max);
	}
	return 0;
}


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值