http://blog.csdn.net/lifeitengup/article/details/8666182

转载 2015年11月17日 19:32:30
function model = svm0311(data,options)
%SVM0311  解决2分类的SVM方法,优化使用matlab优化工具箱quadprog函数实现
%by LiFeiteng     email:lifeiteng0422@gmail.com
%Reference: stptool
%           Pattern Recognition and Machine Learning P333 7.32-7.37


% input aruments
%-------------------------------------------
tic


data=c2s(data);
[dim,num_data]=size(data.X);


if nargin < 2, options=[]; else options=c2s(options); end
if ~isfield(options,'ker'), options.ker = 'linear'; end
if ~isfield(options,'arg'), options.arg = 1; end
if ~isfield(options,'C'), options.C = inf; end
if ~isfield(options,'norm'), options.norm = 1; end
if ~isfield(options,'mu'), options.mu = 1e-12; end
if ~isfield(options,'eps'), options.eps = 1e-12; end


X = data.X;
t = data.y;
t(t==2) = -1;


% Set up QP task
%----------------------------
K = X'*X;
T = t'*t;% 注意t是横向量
H = K.*T;
save('H0311.mat','H')
H = H + options.mu*eye(size(H));


f = -ones(num_data,1);
Aeq = t;
beq = 0;
lb = zeros(num_data,1);
ub = options.C*ones(num_data,1);


x0 = zeros(num_data,1);
qp_options = optimset('Display','off');
[Alpha,fval,exitflag] = quadprog(H, f,[],[], Aeq, beq, lb, ub, x0, qp_options);


inx_sv = find(Alpha>options.eps);


% compute bias
%--------------------------
% take boundary (f(x)=+/-1) support vectors 0 < Alpha < C
b = 0;
inx_bound = find( Alpha > options.eps & Alpha < (options.C - options.eps));
Nm = length(inx_bound);
for n = 1:Nm
    tmp = 0;
    for m = 1:length(inx_sv) %PRML7.37
        tmp = tmp+Alpha(inx_sv(m))*t(inx_sv(m))*K(inx_bound(n),inx_sv(m));
    end
    b = b + t(inx_bound(n))-tmp;
end
b = b/Nm;
model.b = b;   
    
%-----------------------------------------
w = zeros(dim,1);
for i = 1:num_data   
    w = w+ Alpha(i)*t(i)*X(:,i);%PRML 7.29
end


margin = 1/norm(w);
%-------------------------------------------
%此处与stprtool保持接口一致  用于画图展示等
model.Alpha = Alpha( inx_sv );
model.sv.X = data.X(:,inx_sv );
model.sv.y = data.y(inx_sv );
model.sv.inx = inx_sv;
model.nsv = length( inx_sv );
model.margin = margin;
model.exitflag = exitflag;
model.options = options;
model.kercnt = num_data*(num_data+1)/2;
model.trnerr = cerror(data.y,svmclass(data.X, model));
model.fun = 'svmclass';


model.W = model.sv.X*model.Alpha;


% used CPU time
model.cputime=toc;


return;

相关文章推荐

http://blog.csdn.net/wankunde/article/details/41675079/Spark 学习入门教程

Spark 学习入门教程 一、环境准备 测试环境使用的cdh提供的quickstart vm hadoop版本:2.5.0-cdh5.2.0 spark版本:1.1.0...

http://blog.csdn.net/singwhatiwanna/article/details/42343847

一  明确自我定位 现在你是初级工程师,但是你想当个高级工程师,所以,你就要给自己定个目标,即:我是要成为高级工程师的男人。有了这个定位,并且努力朝着这个目标去努力,然后内心深处就会有一个感觉,...

Linux shell脚本编写基础 转自:http://blog.csdn.net/fpmystar/article/details/4183678

转自:http://blog.csdn.net/fpmystar/article/details/4183678 在进行linux测试时编写脚本是必不可少的,Shell脚本的名称可以随便定义...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)