其实就是01背包的变形,只不过多了一个排序。注意i,j的意义
description |
|
input |
第一行是数据的组数T;每组数据的第一行是2个正整数:假期时间m和可做的工作数n;接下来n行分别有3个正整数描述对应的n个工作的起始时间s,终止时间e,总工资c。 数据保证: 1<=T<=1000 9<m<=100 0<n<=1000 s<=100, e<=100, s<=e c<=10000 |
output |
对于每组数据,输出吉哥可获得的最高工资数。 |
sample_input |
1 10 5 1 5 100 3 10 10 5 10 100 1 4 2 6 12 266 |
sample_output |
102 |
#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
int dp[1005];
struct money
{
int l,r,w;
}a[1005];
int cmp(money x,money y)//排序都快忘了怎么写了= =
{
if(x.r==y.r) return x.l<y.l;
return x.r<y.r;
}
int main()
{
// freopen("cin.txt","r",stdin);
int n,t,m;
scanf("%d",&t);
while(t--)
{
memset(dp,0,sizeof(dp));
scanf("%d%d",&m,&n);//假期时间m和可做的工作数n
for(int i=1;i<=n;i++) scanf("%d%d%d",&a[i].l,&a[i].r,&a[i].w);
sort(a+1,a+1+n,cmp);
for(int i=1;i<=n;i++)
{
for(int j=m;j>=a[i].r;j--)
{
dp[j]=max(dp[j],dp[j]-(dp[a[i].r]-dp[a[i].l-1])+a[i].w);//重点的重点
}
}
printf("%d\n",dp[m]);
}
}

文章详细介绍了DB小公主如何利用01背包问题的变形策略,在暑假期间合理安排零散工作,以实现最大化的收入目标。通过排序和动态规划的方法,小公主能够高效地解决工作冲突,确保每项工作都能按时完成,从而最大化收益。
380

被折叠的 条评论
为什么被折叠?



