关闭

为AI转型,我已在行动

标签: AI深度学习
1795人阅读 评论(4) 收藏 举报
分类:

前言

       AI,Artificial Intelligence,人工智能,其本意是相对于生物智能来说的。模仿生物神经网络,就产生了人工神经网络,模仿生物智能,就出现了人工智能。

       虽然AI的概念早在20世纪60年代左右便已诞生,然而限于当时的技术和市场等因素,被搁浅了。现如今,随着互联网的发展和大数据的兴起,AI又来了!中科院院士谭铁牛说:当前,互联网和大数据推动人工智能进入了新的春天,这是现状。

       早在2015年的中国人工智能大会上,中科院院士、中科院副秘书长谭铁牛就说了:目前人工智能的发展现状可以用“国家重视,态势喜人,差距不小,前景看好”形容,面临着众多发展机遇,人工智能的未来还是会有很大的发展空间。

       近日国务院印发《新一代人工智能发展规划》,明确了我国新一代人工智能发展的战略目标:到2020年,人工智能总体技术和应用与世界先进水平同步,人工智能产业成为新的重要经济增长点,人工智能技术应用成为改善民生的新途径;到2025年,人工智能基础理论实现重大突破,部分技术与应用达到世界领先水平,人工智能成为我国产业升级和经济转型的主要动力,智能社会建设取得积极进展;到2030年,人工智能理论、技术与应用总体达到世界领先水平,成为世界主要人工智能创新中心。

       再近一点,第三届中国人工智能大会(CCAI 2017)也如期举行。

 从2016年AlphaGo战胜围棋界世界冠军李世石后,大家对人工智能的热情似乎瞬间被点燃。大家在讨论人工智能的利与弊,甚至霍金那老头子曾经说了人工智能对人类的威胁:“人类不应任由人工智能发展,而不加以控制。如果不对智能机器严加看管,人类的前景可能会相当晦暗。科学家们务必提前阻止这种悲剧的发生,否则人类将因此灭绝。”

       作为一个毕业参加工作已经整整四年的IT开发从业者,我也来谈谈我的一些看法:我觉得人工智能只是一种工具,就像尖刀利刃一样,它是我们的工具,但它也有弊端,用之不慎也会为之所伤。又像水火无情,但水和火又是我们生活必不可少的东西。人工智能可以替代简单重复的劳动,但它终究无法替代人类的无穷智慧和创造力。

 

回顾我的开发生涯

——回顾是为了认清自己,从而更好的进步

       从自学PHP开始,帮学校做一些部门的网站,也用WordPress做自己的独立博客,然后是.NET,大三暑假曾在某电子科技公司实习了一段时间,用.NET开发他们的内部系统,期间还学习了.NET的Wordflow工作流引擎,半途而废。接着在某电商平台企业,继续全职做PHP开发。继续了PHP大约半年多,转折点来了,公司需要为自家的平台做一个类似博客搬家的功能,把客户在其他平台上的数据搬到本平台上来。然后讨论结果是采用java来开发,用java来做爬虫。于是我就这样开始了全职java之路。直到现在,成为javaer已经两年了。目前,由于公司项目需要,我开始用大量时间写Python的代码,用Python写爬虫系统。也就是说,我现在其实是一个全职Pythoner……(不懂java的程序员不是一个好pythoner,^_^)

       用过这些编程语言之后,我发现这些语言都有一定的规律,只是各有各的特性罢了。所以说,语言不是问题,关键在于掌握语言的特性。学一遍语法,同时再掌握该语言的特性,这样你就可以愉快的编程了……不懂语言特性的程序员不是一个好coder,^_^

 

我为什么要为AI转型

——职业生涯某些阶段需要适当的转型

学AI,跟上技术的潮流

       前言也说了,AI现在是国家重视,态势迅猛,前景不错。如果将PC互联网称为互联网1.0,将移动互联网称为互联网2.0,那么,AI就是互联网3.0,它在大数据、互联网推动下,必将是未来的新发展趋势。AI将带我们进入大数据互联网智能时代。因此我认为:作为开发者,应该保持学习热情,学学AI,跟上发展趋势,跟上技术的潮流。

程序员开发生涯的“危机感”

            现如今,各大高校相关专业逐年扩招,各类IT培训机构层出不穷,甚至中学生花几个月培训一下都可以给你干活。程序员越来越多了,也就是说越来越多人来跟你竞争,跟你抢饭碗。长江后浪推前浪,前浪死在沙滩上。想想自己被这些可畏的后生们推倒在沙滩上,是多么可怕的事情,这就是“危机感”。

打造属于自己的“稀缺性” 

       大家都懂“物以稀为贵”的道理。程序员作为一种人力资源,也是同理。
       不要觉得自己工作辛苦天天加班,工资就理所当然比别人高,不一定的,我们要想想,我的工作价值有重?这工作搁这儿,假如我不做有多少人可以接替?我觉得,越少人能接替你的工作,说明你的价值越重,这就是你的“稀缺性”,换言之,也可以叫做“不可替代性”。假如你的工作,随随便便招聘一个人过来就接替了,那样公司还会用高薪供着你么?
       水很重要,能维持人的生命,但是它不稀缺,所以便宜;钻石没有什么实际用处,但是它稀缺,所以昂贵。程序员很重要,工作很辛苦,但是现在一般的程序员已经不稀缺了。AI正在兴起,一些有能力的公司都开始成立AI团队,相比而言,靠谱的AI工程师是比较稀缺的。

AI从何学起

------成为AI工程师,有哪些可选的路径?

AI按垂直领域划分:语音识别、图像识别、自然语言处理等

AI按从事的工作方向划分:AI算法研究、AI工程实现、AI应用

这里主要讲讲工作方向:

AI算法研究

       这类人大都有博士学历,在学校中积累了较好的理论和数学基础积累,对最新的学术成果能较快理解和吸收。这里的理论是指比如语音处理,计算机视觉等专业知识。

AI工程实现

这类人主要提供将计算逻辑,硬件封装打包起来,方便模型的训练和预测。比如:

精通Caffee/TensorFlow等训练框架源码,能熟练使用并做针对性优化;

构建机器学习平台,降低使用门槛,通过页面操作提供样本和模型就能启动训练;

通过FPGA实行硬件加速,实现更低延时和成本的模型预测;

在新模型验证完成后,实现在线平滑的模型切换。

AI应用

       侧重验证好的模型在业务上的应用,常见语音识别,图像视觉,个性化推荐。当然这也包括更多结合业务场景的应用,比如终端网络传输带宽的预测,图片转码中参数的预测等等。

 

       问题来了,我应该选择的AI工作方向是?我,普通二本院校,软件工程专业毕业,从事传统软件开发和互联网软件开发,用过最多的是PHP、JAVA语言,其次Python,几乎没有涉及算法的研究,毕业后总共四年工作经验。显然,以我目前的学历以及阅历,选择从事“AI工程实现”这一方向是最合适的。

 

AI学习计划

——凡事预则立, 不预则废。

       大家说AI,说人工智能的时候,一般也会说到到机器学习和深度学习,以及它们所涉及的算法和数学知识,作为开发者,我们还会考虑编程语言的问题。

       下面这一张图片,说明了人工智能、机器学习、深度学习的关系

       图片解说:人工智能是最早出现的,也是最大、最外侧的同心圆;其次是机器学习,稍晚一点;最内侧,是深度学习,它是当今人工智能大爆炸的核心驱动。


那么,为AI转型,我的学习计划大概从以下几方面入手:

深度学习

掌握PB神经网络

熟练CNN卷积神经网络

熟练RNN循环神经网络

熟练TensorFlow

周莫烦视频教程 (优酷): http://i.youku.com/i/UMTYyNjI2NDYw?spm=a2h0j.8191423.subscription_wrap.DD~A

机器学习

吴恩达机器学习 (网易公开课): http://open.163.com/special/opencourse/machinelearning.html

面向软件工程师的机器学习每日学习计划|附大量资料 :http://www.360doc.com/content/16/1101/10/13792507_603073481.shtml

数学

数据分析、概率论、线性代数及矩阵
机器学习理论篇1:机器学习的数学基础:https://zhuanlan.zhihu.com/p/25197792

编程语言

Python,熟练掌握Python
精通Python常用的库、Numpy、Python的机器学习库


       以上,我打算先从“深度学习”入手,用Python去实现深度学习的神经网络,对照教程完成一些小实例,以实例带动理论的学习,帮助理解。然后在从中穿插复习和学习相关的数学知识。总而言之,先动起来!


AI在本公司(互联网金融)项目的切入点的思考

爬虫项目

——利用深度学习进行验证码识别

       前面提到,用Python写爬虫系统。这里就聊聊爬虫开发上遇到的一个问题:验证码破解。

验证码破解,传统的做法orc识别。现在采用人工智能的方法,用深度学习技术去训练识别模型。于是我们尝试了使用Tensorflow框架,构建了CNN卷积神经网络,去做了爬虫的验证码识别。

 

BI项目

——利用AI技术构建精准营销系统

       将AI技术用到精准营销系统,首先收集大量用户散落在不同场景下碎片化、非结构化的文字、图片、声音、视频等数据,然后应用大数据爬虫、AI的深度学习、实时标签计算,分析用户信息、了解用户其当前需求甚至挖掘潜在需求,形成实时用户特征画像,推荐相应的产品或服务,实现千人千面的个性化精准营销。例如我们的平台有发投资红包的功能,这是为了吸引用户持续的关注我们的平台,进而促成交易。而我们利用AI技术去刻画出用户特征模型之后,就可以利用用户特征模型更高效的识别哪些客户使用了红包,以后需要对哪些客户发投资红包。还有类似的营销场景也是同理。

 

参考资料

 

1.一篇文章讲清楚人工智能、机器学习和深度学习的区别


2.“骗子”到“人类要被毁灭了” ,人工智能有怎样的发展过程?


3.李开复清华演讲:为什么今天是人工智能的黄金时代?


4.人人都可以做深度学习应用:入门篇


5.腾讯云总监手把手教你,如何成为 AI工程师?


6.资本热捧的人工智能,为何在金融领域四处碰壁?


7.揭秘人工智能:距离40%金融民工被取代或只剩8


8.干货 | 如何从零学习人工智能?最好的资源都在这里了




9
1

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:3188次
    • 积分:67
    • 等级:
    • 排名:千里之外
    • 原创:2篇
    • 转载:2篇
    • 译文:0篇
    • 评论:4条
    文章存档
    最新评论