12、Spark Streaming源码解读之Executor容错安全性

原创 2016年05月30日 09:46:50
一、Spark Streaming 数据安全性的考虑:
  1. Spark Streaming不断的接收数据,并且不断的产生Job,不断的提交Job给集群运行。所以这就涉及到一个非常重要的问题数据安全性。
  2. Spark Streaming是基于Spark Core之上的,如果能够确保数据安全可好的话,在Spark Streaming生成Job的时候里面是基于RDD,即使运行的时候出现问题,那么Spark Streaming也可以借助Spark Core的容错机制自动容错。
  3. 对Executor容错主要是对数据的安全容错
  4. 为啥这里不考虑对数据计算的容错:计算的时候Spark Streaming是借助于Spark Core之上的容错的,所以天然就是安全可靠的。

Executor容错方式: 
1. 最简单的容错是副本方式,基于底层BlockManager副本容错,也是默认的容错方式。 

2.WAL日志方式

3. 接收到数据之后不做副本,支持数据重放,所谓重放就是支持反复读取数据。


BlockManager备份:

  1. 默认在内存中两份副本,也就是Spark Streaming的Receiver接收到数据之后存储的时候指定StorageLevel为MEMORY_AND_DISK_SER_2,底层存储是交给BlockManager,BlockManager的语义确保了如果指定了两份副本,一般都在内存中。所以至少两个Executor中都会有数据。


Receiver将数据交给BlockManger是由ReceiveredBlockHandler来处理的,有两种ReceiveredBlockHandler的实现:
1.WriteAheadLogBasedBlockHandler
2.BlockManagerBasedBlockHandler

这里的storageLevel是构建InputDStream时传入的,socketTextStream的默认存储级别是StorageLevel.MEMORY_AND_DISK_SER_2



如果使用WriteAheadLogBasedBlockHandler需要开启WAL,默认并没有开启:




WAL日志方式:
    这种方式会现将数据写入日志文件,就是checkpoint目录,出现异常是,从checkpoint目录重新读取数据,进行恢复。启动WAL时候,没必要将副本数设置成大于1,也不需要序列化。



WAL会将数据同时写入BlockManager和write ahead log,而且是并行的写block,当然两处的block存储完成,才会返回。



将Block 存入BlockManager:



将Block 存入WAL日志:



WAL写数据的时候是顺序写,数据不可修改,所以读的时候只需要按照指针(也就是要读的record在那,长度是多少)读即可。所以WAL的速度非常快。
浏览一下WriteAheadLog,他是一个抽象类:

看一下WriteAheadLog的一个实现类FileBasedWriteAheadLog的write方法:
根据不同时间获取不同Writer将序列化结果写入文件,返回一个FileBasedWriteAheadLogSegment类型的对象fileSegment。

读数据:

其中创建了一个FileBaseWriteAheadLogRandomReader对象,然后调用了该对象的read方法:


支持数据重放。

在实际的开发中直接使用Kafka,因为不需要容错,也不需要副本。 
Kafka有Receiver方式和Direct方式 
Receiver方式:是交给Zookeeper去管理数据的,也就是偏移量offSet.如果失效后,Kafka会基于offSet重新读取,因为处理数据的时候中途崩溃,不会给Zookeeper发送ACK,此时Zookeeper认为你并没有消息这个数据。但是在实际中越来用的越多的是Direct的方式直接操作offSet.而且还是自己管理offSet.

  1. DirectKafkaInputDStream会去查看最新的offSet,并且把offSet放到Batch中。
  2. 在Batch每次生成的时候都会调用latestLeaderOffsets查看最近的offSet,此时的offSet就会与上一个offSet相减获得这个Batch的范围。这样就可以知道读那些数据。
版权声明:原创作品,允许转载,转载时请务必以超链接形式标明文章 原始出处 、作者信息和本声明,否则将追究法律责任。

第12课:Spark Streaming源码解读之Executor容错安全性

本节从安全角度来讲解sparkstreaming,因为sparkstreaming会不断的接收数据、不断的产生job、不断的提交job。所以有一个至关重要的问题就是数据安全性。     由于spar...

第12课:Spark Streaming源码解读之Executor容错安全性

本节课聚焦executor的安全容错,driver的安全容错下节课讲。 executor的安全容错主要是executor接受的数据的安全性,计算的安全容错完全可以借助于底层的rdd的安全容错。...

Spark Streaming源码解读之Executor容错安全性

Receiver接收到的数据交由ReceiverSupervisorImpl来管理。 ReceiverSupervisorImpl接收到数据后,会数据存储并且将数据的元数据报告给ReceiverT...

Spark Streaming源码解读之Executor容错安全性

本篇博文的目标是 1. Executor的WAL机制详解 2. 消息重放Kafka数据安全性的考虑: Spark Streaming不断的接收数据,并且不断的产生Job,不断的提交Job给集群...

第12课:Spark Streaming源码解读之executor容错安全性

本期内容: 1.Executor的WAL 2.消息重放 3.其它   StorageLevel.scala Memory不够的时候才考虑disk classStorageLevel p...

Spark定制班第12课:Spark Streaming源码解读之Executor容错安全性

本期内容: 1. Executor的WAL 2. 消息重放 最天然的数据容错就是利用数据副本,另外一种是数据源支持重放。 基于BlockManager来做数据备份,StorageLeve...

Spark Streaming源码解读之Driver容错安全性

Driver的容错有两个层面:1. Receiver接收数据的元数据 2. Driver管理的各组件信息(调度和驱动层面) 元数据采用了WAL的容错机制 case AddBlock(re...

Spark Streaming源码解读之Driver容错安全性

本篇博文的目标如下: 1. ReceiverBlockTracker容错安全性 2. DStream和JobGenerator容错安全性文章的组织思路如下: 考虑Driver容错安全性,...

第13课:Spark Streaming源码解读之Driver容错安全性

本期内容: 1.ReceivedBlockTracker容错安全性 2. DStream和JobGenerator容错安全性   ReceivedBlockTracker跟踪数据需要状态。 DStre...

Spark Streaming源码解读之Driver容错安全性

一:容错安全性 1. ReceivedBlockTracker负责管理Spark Streaming运行程序的元数据。数据层面 2. DStream和JobGenerator是作业调度的核心层面,也就...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:12、Spark Streaming源码解读之Executor容错安全性
举报原因:
原因补充:

(最多只允许输入30个字)