关闭

Matlab中的数据归一化

归一化的具体作用是归纳统一样本的统计分布性。归一化在0-1之间是统计的概率分布,归一化在-1--+1之间是统计的坐标分布。归一化有同一、统一和合一的意思。无论是为了建模还是为了计算,首先基本度量单位要同一,神经网络是以样本在事件中的统计分别几率来进行训练(概率计算)和预测的,且sigmoid函数的取值是0到1之间的,网络最后一个节点的输出也是如此,所以经常要对样本的输出归一化处理。归一化是统一在0...
阅读(599) 评论(0)

主成分分析(PCA)扫盲帖

先上定义,百度,wiki都说的很好,我就直接给链接了: 百度百科:主成分分析 wiki:PCA 下面主要讲讲它的原理和实现过程。 如果用一句话说:PCA就是属性向量的正交化(得到相互正交的新属性),并取出方差最大(对应到实际意义就是区分度最高)的几个新属性。 从几何上说,PCA就是坐标变换。 从线性代数角度说就是修正的schmit正交化。 这里有一篇扫盲贴写的很好,主要是非常形象易懂...
阅读(882) 评论(0)

ASM(Active Shape Model)算法介绍

ASM是一种基于点分布模型(Point Distribution Model, PDM)的算法。在PDM中,外形相似的物体,例如人脸、人手、心脏、肺部等的几何形状可以通过若干关键特征点(landmarks)的坐标依次串联形成一个形状向量来表示。本文就以人脸为例来介绍该算法的基本原理和方法。首先给出一个标定好68个关键特征点的人脸面部图片,如下所示:...
阅读(663) 评论(0)

AP聚类算法

Affinity Propagation (AP) 聚类是2007年在Science杂志上提出的一种新的聚类算法。它根据N个数据点之间的相似度进行聚类,这些相似度可以是对称的,即两个数据点互相之间的相似度一样(如欧氏距离);也可以是不对称的,即两个数据点互相之间的相似度不等。这些相似度组成N×N的相似度矩阵S(其中N为有N个数据点)。       AP算法不需要事先指定聚类数目,相反它将所有...
阅读(15655) 评论(3)

互信息概念与定理

最近在看一些熵相关的东西,为了了解一下互信息相关的东西,查阅了一些资料,有一个课件自己感觉写的不错,但是下载不下来,我就对它们进行了截图,希望对大家有帮助。这个课件中讲的内容比较基础,但是对于非通信、信息类的同学来说还是很有帮助的,而且不仅通俗易懂,而且证明过程详尽,是不可多得的好材料。其重要包括互信息概念、定理、常用的结论,已经一些应用中经常用到的性质,闲言少叙,直接上图。 更多0...
阅读(404) 评论(0)

The Dirichlet Distribution 狄利克雷分布 (PRML 2.2.1)

Dirichlet分布可以看做是分布之上的分布。如何理解这句话,我们可以先举个例子:假设我们有一个骰子,其有六面,分别为{1,2,3,4,5,6}。现在我们做了10000次投掷的实验,得到的实验结果是六面分别出现了{2000,2000,2000,2000,1000,1000}次,如果用每一面出现的次数与试验总数的比值估计这个面出现的概率,则我们得到六面出现的概率,分别为{0.2,0.2,0.2,0...
阅读(695) 评论(0)

【JMLR’03】Latent Dirichlet Allocation (LDA)- David M.Blei

http://www.xperseverance.net/blogs/2012/03/17/ 若公式显示有问题请复制链接到新TAB重新打开 听说国外大牛都认为LDA只是很简单的模型,吾辈一听这话,只能加油了~ 另外这个大牛写的LDA导读很不错:http://bbs.byr.cn/#!article/PR_AI/2530?p=1 一、预备知识:        1. ...
阅读(595) 评论(0)

Eigen初步1:初步体验Eigen库

Eigen初步1:初步体验Eigen库   http://www.cnblogs.com/tornadomeet    前言:   Eigen 是一个线性算术的C++模板库,包括:vectors, matrices, 开源以及相关算法。功能强大、快速、优雅以及支持多平台,可以使用该库来方便处理一些矩阵的操作,达到类似matlab那样的快捷。现在已经发展到Eigen3了,目前最新版本为Ei...
阅读(991) 评论(0)

Gibbs sampling [Gibbs采样]1

关于Gibbs sampling, 首先看一下Wiki上的解释:Gibbs sampling or Gibbs sampler is an algorithm to generate a sequence of samples from the joint probability distribution of two or more random variables. The purpo...
阅读(449) 评论(0)

强大的矩阵奇异值分解(SVD)及其应用

前言:     上一次写了关于PCA与LDA的文章,PCA的实现一般有两种,一种是用特征值分解去实现的,一种是用奇异值分解去实现的。在上篇文章中便是基于特征值分解的一种解释。特征值和奇异值在大部分人的印象中,往往是停留在纯粹的数学计算中。而且线性代数或者矩阵论里面,也很少讲任何跟特征值与奇异值有关的应用背景。奇异值分解是一个有着很明显的物理意义的一种方法,它可以将一个比较复杂的矩阵用更小更简...
阅读(593) 评论(0)

中国科学院的樊彬老师图像特征描述符方面的综述

这次我们荣幸地邀请到中国科学院自动化研究所的樊彬老师为我们撰写图像特征描述符方面的最新综述。樊彬老师在图像特征描述方面已连续发表了包括TPAMI、PR、ICCV、CVPR在内的多篇高质量论文。他的个人主页为:http://www.sigvc.org/bfan/     以后我们将持续邀请国内外众多老师做最新的视觉计算专业综述报告,如特征提取和描述、稀疏表达、人体跟踪、三维衣服布料动画、轻量级...
阅读(4281) 评论(0)

【综述】(MIT博士)林达华老师-“概率模型与计算机视觉

距上一次邀请中国科学院的樊彬老师为我们撰写图像特征描述符方面的综述(http://www.sigvc.org/bbs/thread-165-1-1.html)之后,这次我们荣幸地邀请到美国麻省理工学院(MIT)博士林达华老师为我们撰写“概率模型与计算机视觉”的最新综述。这次我们特别增设了一个问答环节,林老师针对论坛师生提出的许多问题(如概率图模型与目前很热的深度神经网络的联系和区别)一一做了详细解...
阅读(1197) 评论(0)

Stanford概率图模型(Probabilistic Graphical Model)— 第一讲 贝叶斯网络基础

概率图模型(Probabilistic Graphical Model)系列来自Stanford公开课Probabilistic Graphical Model中Daphne Koller 老师的讲解。(https://class.coursera.org/pgm-2012-002/class/index) 主要内容包括(转载请注明原始出处http://blog.csdn.net/yangl...
阅读(978) 评论(0)

PGM学习笔记一

一 课程基本信息           本课程是由Prof.Daphne Koller主讲,同时得到了Prof. Kevin Murphy的支持,在coursera上公开传播。在本课程中,你将学习到PGM(Probabilistic Graphical Models)表示的基本理论,以及如何利用人类自身的知识和机器学习技术来构建PGM;还将学习到使用PGM算法来对有限、带噪声的证据...
阅读(850) 评论(0)

马尔可夫网络,(马尔可夫随机场、无向图模型)(Markov Random Field)

马尔可夫网络,(马尔可夫随机场、无向图模型)是关于一组有马尔可夫性质随机变量Random Field)" style="margin:0px; padding:0px; border:0px none; list-style:none; font-family:sans-serif; line-height:1.5em; vertical-align:middle">的全联合概率分布模型。 ...
阅读(3969) 评论(0)

马尔科夫随机场和马尔科夫链

1.什么是随机过程? 在当代科学与社会的广阔天地里,人们都可以看到一种叫作随机过程的数学模型:从银河亮度的起伏到星系空间的物质分布、从分子的布朗运动到原子的蜕变过程,从化学反应动力学到电话通讯理论、从谣言的传播到传染病的流行、从市场预测到密码破译,随机过程理论及其应用几乎无所不在。人类历史上第一个从理论上提出并加以研究的过程模型是马尔科夫链,它是马尔科夫对概率论乃至人类思想发展作出的又一伟大...
阅读(1057) 评论(0)

特征向量的几何意义

特征向量的几何意义 长时间以来一直不了解矩阵的特征值和特征向量到底有何意义(估计很多兄弟有同样感受)。知道它的数学公式,但却找不出它的几何含义,教科书里没有真正地把这一概念从各种角度实例化地进行讲解,只是一天到晚地列公式玩理论——有个屁用啊。 根据特征向量数学公式定义,矩阵乘以一个向量的结果仍是同维数的一个向量,因此,矩阵乘法对应了一个变换,把一个向量变成同维数的另一个向量...
阅读(1228) 评论(0)

PRML Chapter 2. Probability Distributions

PRML Chapter 2. Probability Distributions 发表日期:2012 年 3 月 2 日 分类:  Academics   标签:  PR&ML   作者: 管理员.    12,735 views 注:mathjax公式显示常会有问题,若遇到问题,请刷新或换个浏览器查看。 P68 conj...
阅读(653) 评论(0)

Dirichlet Process and Hierarchical Dirichlet Process

Dirichlet Process and Hierarchical Dirichlet Process Dirichlet Process and Hierarchical Dirichlet Process        在这篇文章里,我会初步地介绍Dirichlet Process以及Hierarchical Dirichlet Process,不过仅仅局限于模型本身,并...
阅读(3127) 评论(0)

The Dirichlet Distribution 狄利克雷分布 (PRML 2.2.1)

The Dirichlet Distribution 狄利克雷分布 (PRML 2.2.1) Dirichlet分布可以看做是分布之上的分布。如何理解这句话,我们可以先举个例子:假设我们有一个骰子,其有六面,分别为{1,2,3,4,5,6}。现在我们做了10000次投掷的实验,得到的实验结果是六面分别出现了{2000,2000,2000,2000,1000,1000}次,如果用每一面出现...
阅读(752) 评论(0)
162条 共9页1 2 3 4 5 ... 下一页 尾页
    个人资料
    • 访问:229166次
    • 积分:2391
    • 等级:
    • 排名:第16235名
    • 原创:4篇
    • 转载:158篇
    • 译文:0篇
    • 评论:11条
    最新评论