实际中常常会用到的算法:堆排序算法实例

原创 2013年12月06日 10:35:22

下面我们来看一下堆排序算法:堆排序算法实际当中常常会用到,因为堆这个数据结构是非常普通的,计算机中经常会遇到,那么我们就有必要了解一下利用堆来排序,下面的案例就是一个堆排序算法,该算法的运行时间一般,但由于堆这个数据结构经常遇到,所以还是有用武之地的!

C语言版本的案例:

/*
欲详知本程序,请阅读《算法导论》中关于堆排序的章节?
*/

#include "stdio.h"
#include "conio.h"
#include "math.h"
#define N  23
/*
堆排序算法:时间复杂度是nlg(n),以2为底,不是10!
它能够进行原址排序,堆这一数据结构有很多应用。可以
作为高效的优先队列,例如作业调度或事件驱动模拟器
这样的应用程序来说,优先队列对应着应用程序中的对象
在堆来实现优先队列时,需要在堆中的每个元素里存储对
应对象的句柄。句柄的准确含义依赖于具体的应用程序。
同样,在应用程序的对象中,我们也需要存储一个堆中对
应元素的句柄。通常这一句柄是数组的下标。由于在堆的
操作过程中,元素会改变其在数组中的位置,因此在具体
的实现中,在重新确定堆元素位置时,也需要更新相应应
用程序对象中的数组下标。因为对应用程序对象的访问细
节强烈依赖于应用程序及其实现方式,这里一言两语也很
难说的清,所以下面的例程仅给出了(最大堆)堆排序的简
单实现过程。注意待排序数组的0号元素并不能用于排序?
有特殊作用,最终输出一个从小到大的有序数组
*/
void heap_sort(int A[],int heap_size)
{
   int i=0,temp;
   build_heap_sort(A,heap_size);
   for(i=N;i>1;i--)
   {
       heap_size--;
       temp=A[i];
       A[i]=A[1];
       A[1]=temp;
       check_heap(A,1,heap_size);
   }
   return ;
}
/*返回左子树节点的下标,不是值,下标代表了在堆中的
位置,有实际意义*/
int left_node(int i)
{
   return  i*2;
}
int right_node(int i)  //返回右子树节点的下标
{
    return i*2+1;
}
/*根据堆的大小建立一个最大堆,堆的第一个元素从下标为
1处开始,不是0!*/
int build_heap_sort(int A[],int heap_size)
{
     int i=0;
     for(i=(int)floor(heap_size/2.0);i>0;i--)
     {
        check_heap(A,i,heap_size);
     }
     return ;
}
/*进行最大堆的排序,保持最大堆的性质:根节点的值一定大于
它的左子树和右子树,如果发现子节点更大,则进行互换,互换后
被替换的子节点仍然可能违反这个性质,所以对替换后的子节点
也进行同样的操作。*/
int check_heap(int A[],int node,int heap_size) //node为下标,代表了在堆中的位置
{
   int largest=0,left,right,temp;
   left=left_node(node);
   right=right_node(node);
   if((A[left]>A[node])&&(left<=heap_size)){largest=left;}
   else largest=node;
   if((A[largest]<A[right])&&(right<=heap_size)){largest=right;}
   if(largest!=node){
       temp=A[largest];
       A[largest]=A[node];
       A[node]=temp;
       /*交换之后子节点可能违反最大堆性质,所以必须进行同样的检查*/
       check_heap(A,largest,heap_size);
   }
   return 0;
}
main()
{   /*0号元素没有参加排序,但必须有*/
    int a[N+1]={0,11,5,4,3,9,2,8,5,6,7,54,67,44,34,32,12,14,38,21,24,25,78,20},i;
    heap_sort(a,N);
    printf("heap_sort_array is already now\n");
    for(i=1;i<=N;i++) /*0号元素是自行添加,不需要输出*/
        printf(" %d ",a[i]);
    getch();
}


算法(第四版)学习笔记之java实现堆排序

继上一篇实现基于堆的优先队列后,这次将利用上一次完成的基于堆的能够重复删除最大元素操作的优先队列来实现一种经典而优雅的排序算法,称之为堆排序。 堆排序可分为两个阶段: 1.构建堆:在堆的构建过程中...
  • l243225530
  • l243225530
  • 2015年07月26日 16:02
  • 1039

堆排序算法的改进

堆排序算法的时间复杂度为O(nlogn),一般采用上滤建堆,如果考虑用下滤建堆,不仅可以精简代码,而且时间也会更快。 //堆排序算法的改进 void siftdown(int *v, int l, i...
  • moses1213
  • moses1213
  • 2016年01月26日 21:29
  • 426

经典算法——堆排序笔试题

阿里巴巴2016研发工程师笔试选择题 1.将整数数组(7-6-3-5-4-1-2)按照堆排序的方式原地进行升序排列,请问在第一轮排序结束之后,数组的顺序是_____。...
  • geekmanong
  • geekmanong
  • 2016年04月21日 15:44
  • 1868

《算法(第四版)》排序-----堆排序

1.什么是堆? 讲堆排序之前,先了解一下什么是堆。堆其实相当于一种数据结构,它的本质是一种数组对象,但是它里面的内同又是一颗完全二叉树结构,它的特点是父节点的值大于(或小于)两个子节点的值,常常用于优...
  • kwang0131
  • kwang0131
  • 2016年04月09日 12:00
  • 453

经典算法学习——堆排序

堆排序是相对其他排序稍微麻烦的排序,是一种利用堆的性质进行的选择排序。堆其实是一棵完全二叉树,只要任何一个非叶节点的关键字不大于或者不小于其左右孩子节点,就可以形成堆。堆分为大顶堆和小顶堆。由上述性质...
  • CHENYUFENG1991
  • CHENYUFENG1991
  • 2016年02月03日 13:49
  • 2262

数据结构笔记--实际软件开发中用到的最多的数据结构和算法

最近在复习数据结构,在网上看到一篇博文:既然在实际应用中用不到数据结构和算法,为什么我们还要学习它?因为哥也只是一个学生,没有接触过实际的项目开发。然后在知乎上看到这个问答: https://www...
  • ZH___xin
  • ZH___xin
  • 2016年07月30日 19:24
  • 760

C++ 堆排序算法的实现与改进(含笔试面试题)

堆排序(Heap sort)是指利用堆这种数据结构所设计的一种排序算法。堆积是一个近似完全二叉树的结构,并同时满足堆积的性质:即子结点的键值或索引总是小于(或者大于)它的父节点。堆排序可以用到上一次的...
  • misayaaaaa
  • misayaaaaa
  • 2017年03月31日 09:21
  • 1606

堆排序算法设计与分析

堆排序(HeapSort)是指利用堆积树(堆)这种数据结构所设计的一种排序算法,它是选择排序的一种。堆分为大根堆和小根堆,是完全二叉树。大根堆要求父结点的值大于或等于子结点的值,小根堆相反。根据大根堆...
  • secyb
  • secyb
  • 2016年05月11日 17:04
  • 1211

【啊哈!算法】算法12:堆——神奇的优先队列(下)

接着上一Pa说。就是如何建立这个堆呢。可以从空的堆开始,然后依次往堆中插入每一个元素,直到所有数都被插入(转移到堆中为止)。因为插入第i个元素的所用的时间是O(log i),所以插入所有元素的整体...
  • ahalei
  • ahalei
  • 2014年06月17日 09:35
  • 2313

【排序算法】堆排序原理及Java实现

1、基本思想堆是一种特殊的树形数据结构,其每个节点都有一个值,通常提到的堆都是指一颗完全二叉树,根结点的值小于(或大于)两个子节点的值,同时,根节点的两个子树也分别是一个堆。 堆排序就是利用堆(...
  • jianyuerensheng
  • jianyuerensheng
  • 2016年04月27日 18:34
  • 8194
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:实际中常常会用到的算法:堆排序算法实例
举报原因:
原因补充:

(最多只允许输入30个字)