关闭

题目1113:二叉树(二叉树结点问题)

121人阅读 评论(0) 收藏 举报
题目1113:二叉树

两种方法解决,都利用了二叉树的性质

时间限制:1 秒

内存限制:32 兆

题目描述:

 

 

 


    如上所示,由正整数1,2,3……组成了一颗特殊二叉树。我们已知这个二叉树的最后一个结点是n。现在的问题是,结点m所在的子树中一共包括多少个结点。

    比如,n = 12,m = 3那么上图中的结点13,14,15以及后面的结点都是不存在的,结点m所在子树中包括的结点有3,6,7,12,因此结点m的所在子树中共有4个结点。

输入:

    输入数据包括多行,每行给出一组测试数据,包括两个整数m,n (1 <= m <= n <= 1000000000)。最后一组测试数据中包括两个0,表示输入的结束,这组数据不用处理。

输出:

    对于每一组测试数据,输出一行,该行包含一个整数,给出结点m所在子树中包括的结点的数目。

样例输入:
3 12
0 0
样例输出:
4
思路:

令父节点的标号为i, 若左孩子存在,那么左孩子的标号为2*i,若右孩子存在,那么右孩子标号为2*i+1。根据这个性质我便一层一层搜,
若不到最后一层,那么当前层的结点便可以全部加上,而不必挨个去计数。其实最后一层也不必挨个去计数,
只要最后一层的尾结点的标号大于最左孩子的标号,那么便可以用尾结点下标剪去最左孩子的下标加1.

#include <iostream>
#include<string.h>
#include<stdio.h>
using namespace std;

int main()
{
    int m,n,sum,left,right;
    while(scanf("%d%d",&m,&n)!=EOF&&(m||n))
    {
      sum=0;
      if(m==n) sum=1;
      else
      {
          if(m<=n) sum=1;
          left=2*m;
          right=2*m+1;
          while(n>right)
          {
              sum+=(right-left+1);
              left*=2;
              right=right*2+1;
          }
          if(n>=left) sum=sum+(n-left)+1;
      }
       printf("%d\n",sum);
    }
    return 0;
}

 方法2

#include <iostream>
#include<string.h>
#include<stdio.h>
#include<math.h>
using namespace std;
 
int main()
{
    long long m,n,sum,left,right;
    while(scanf("%lld%lld",&m,&n)!=EOF&&(m||n))
    {
      sum=0;
      int i=0;
      left=m;
      right=m;
      while(right<=n)
      {
          sum+=int(pow(2.0,i++));
          right=right*2+1;//右子树
          left*=2;//左子树
      }
      //下一层右子树不存在时
      while(left<=n)
      {
          sum++;
          left++;
      }
      printf("%lld\n",sum);
    }
    return 0;
}
 
/**************************************************************
    Problem: 1113
    User: zhuoyuezai
    Language: C++
    Result: Accepted
    Time:0 ms
    Memory:1608 kb
****************************************************************/

 

0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:42178次
    • 积分:964
    • 等级:
    • 排名:千里之外
    • 原创:136篇
    • 转载:6篇
    • 译文:0篇
    • 评论:1条
    最新评论