关闭

题目1056:最大公约数

60人阅读 评论(0) 收藏 举报
题目1056:最大公约数

时间限制:1 秒

内存限制:32 兆

特殊判题:

题目描述:

输入两个正整数,求其最大公约数。

输入:

测试数据有多组,每组输入两个正整数。

输出:

对于每组输入,请输出其最大公约数。

样例输入:
49 14
样例输出:
7
结题思路,粗暴解法时间复杂度太大,使用欧几里算法
设两数为a、b(a<b),用gcd(a,b)表示a,b的最大公约数,r=a (mod b) 为a除以b的余数,k为a除以b的商,即a÷b=k.......r。辗转相除法即是要证明gcd(a,b)=gcd(b,r)。
第一步:令c=gcd(a,b),则设a=mc,b=nc
第二步:根据前提可知r =a-kb=mc-knc=(m-kn)c
第三步:根据第二步结果可知c也是r的因数
第四步:可以断定m-kn与n互质【假设m-kn=xd,n=yd (d>1),则m=kn+xd=kyd+xd=(ky+x)d,则a=mc=(ky+x)cd,b=nc=ycd,则a与b的一个公约数cd>c,故c非a与b的最大公约数,与前面结论矛盾】,因此c也是b与r的最大公约数。
从而可知gcd(b,r)=c,继而gcd(a,b)=gcd(b,r)。
证毕。
以上步骤的操作是建立在刚开始时r≠0的基础之上的。即m与n亦互质。
#include <iostream>
#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<stack>
using namespace std;
//求最大公约数

int gcd (int a,int b)
{
    if(b==0)
        return a;   //b为0,则最大公约数为a
    else
        return gcd(b,a%b);//否则求b与a%b的最大公约数
}
int main()
{
    int x,y;
    while(scanf("%d %d",&x,&y)!=EOF)
    {
        printf("%d\n",gcd(x,y));
    }
    return 0;
}
#include <iostream>
#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<stack>
using namespace std;
//求最大公约数

int gcd (int a,int b)
{
   while(b!=0){
    int t=a%b;
    a=b;
    b=t;
   }
   return a;
}
int main()
{
    int x,y;
    while(scanf("%d %d",&x,&y)!=EOF)
    {
        printf("%d\n",gcd(x,y));
    }
    return 0;
}

 

0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:33172次
    • 积分:886
    • 等级:
    • 排名:千里之外
    • 原创:137篇
    • 转载:6篇
    • 译文:0篇
    • 评论:1条
    最新评论