[HDU 2196] Computer (树形dp)

原创 2016年08月31日 15:45:10

链接

HDU 2196


题意

给出一个树,边含权,对树中的每个节点求出与相距最远点的距离。


思路

该题目是树形dp的一种经典模型。
树形dp的代码总是写在dfs中的,我们在递归中对每个节点返回其后代解并取最优值,但是对于这个问题,最优解不一定存在在某点的后代中,也可能是通过该点和其父节点的路径的某个解,这样就把解分成了两部分。
我们通过两次dfs解决该问题。
在第一次dfs中,对每个节点求出通过其子得到的最优解和次优解,并记录得到最优解的子节点id。
在第二次dfs中,设v为u的一个子节点,并且u已得到全局最优解,如果u的最优解不是通过v得到的,那么用u的最优解加上u-v的边权,同v通过其子得到的最优解作对比就可得到v的最优解。如果u的最优解是通过v得到的,那么则用次优解加u-v边权和v通过其子得到的最优解作对比,得到v的全局最优解。
显然第二次dfs中,根节点就是已得到全局最优解的节点,向下层递归可逐步得到所有节点的全局最优解。
PS:这种树形dp很典型,需要对树中的每个节点去求全局最优解问题,需要从子和父两个方向去考虑。因为树形dp总是在递归中的,我们通过一次dfs很难解决问题,因为范围是越来越小的。但是当第一次dfs结束后,我们就能拿到所有点的“父向最优解”,进而结合前一次的“子向最优解”得出全局最优解。


代码

#include <cstdio>
#include <vector>
#include <iostream>
using namespace std;
#define maxn (10010)
vector<int> son[maxn], cost[maxn];
int vis[maxn], fst[maxn], check[maxn], sec[maxn];
int dfs_son(int u)
{
    vis[u] = 1;
    fst[u] = sec[u] = 0;
    check[u] = 0;
    for(int i = 0, v, l; i < son[u].size(); i++) if(!vis[v = son[u][i]])
    {
        l = dfs_son(v) + cost[u][i];
        if(l > fst[u]) { sec[u] = fst[u]; fst[u] = l; check[u] = v; }
        else if(l > sec[u]) { sec[u] = l; }
    }
    vis[u] = 0;
    return fst[u];
}
int dfs_fa(int u, int fa)
{
    vis[u] = 1;
    if(fa > fst[u]) { sec[u] = fst[u]; fst[u] = fa; check[u] = 0; }
    else if(fa > sec[u]) { sec[u] = fa; }
    for(int i = 0, v; i < son[u].size(); i++) if(!vis[v = son[u][i]])
    {
        if(check[u] != v) dfs_fa(v, fst[u] + cost[u][i]);
        else dfs_fa(v, sec[u] + cost[u][i]);
    }
    vis[u] = 0;
}
void init(int n)
{
    for(int i = 0; i <= n; i++)
    {
        son[i].clear();
        cost[i].clear();
    }
}
int main()
{
    int n;
    while(cin >> n)
    {
        init(n);
        for(int i = 2, j, a; i <= n; i++)
        {
            scanf("%d%d", &j, &a);
            son[j].push_back(i);
            cost[j].push_back(a);
            son[i].push_back(j);
            cost[i].push_back(a);
        }
        dfs_son(1);
        dfs_fa(1, 0);
        for(int i = 1; i <= n; i++)
            printf("%d\n", fst[i]);
    }
    return 0;
}
版权声明:想转就转吧,反正也是人人都会的东西:-(

hdu3534 树形dp(求树中两点之间的最大距离)

http://acm.hdu.edu.cn/showproblem.php?pid=3534 Problem Description In the Data structure...
  • u013573047
  • u013573047
  • 2015年02月14日 18:19
  • 1428

树的直径的两种求法(bfs与dp)

树的直径. 之前看树形dp的时候。对树的最远距离只是模糊理解了。并不是太懂。 然后发现了2196这个题。暴力tle一次后发现的树的直径转化问题。 然后网上介绍了4个题。 顺着做。 hdu-...
  • qq_27567837
  • qq_27567837
  • 2015年12月17日 01:20
  • 1635

hdu 2196 computer 求树上的任意最远点对 O(n)

题意: 给定n个结点,他们之间用n-1条边链接(这一点说明这个图的形状 就是一棵树 无环),给你一个结点,距离此节点最远的点与这个节点之间的距离。 解题思路: 经典的树上最长点对问题。不过带权,...
  • u013382399
  • u013382399
  • 2015年04月10日 11:37
  • 1220

【hdu】2196 Computer【树形dp】

题意: 给出一棵树,树上边的长度不同,问树上的每个节点到别的节点的最远距离是多少 题解: 树形dp的经典应用,一个节点b的最长距离有三种情况,1.来自他的子树2.与他父节点距离最大的节点+他与他父节点...
  • a709743744
  • a709743744
  • 2016年06月29日 11:14
  • 111

[HDU 2196] Computer 树形dp

http://acm.hdu.edu.cn/showproblem.php?pid=2196题意:开始输入 n ,表示有 n 个顶点,然后输入 n - 1 行,第 i 行两个数 x, y 表示 i, ...
  • AcmHonor
  • AcmHonor
  • 2015年08月06日 20:15
  • 230

hdu 2196 Computer(树形DP)

题意:题目给出电脑
  • zizaimengzhongyue
  • zizaimengzhongyue
  • 2014年04月28日 21:26
  • 547

HDU 2196-Computer(经典树形DP)

题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=2196 Computer Time Limit: 1000/1000 MS (Jav...
  • qq_31281327
  • qq_31281327
  • 2017年08月02日 22:17
  • 108

HDU 2196 Computer(树形DP)

HDU 2196 Computer(树形DP) 分析:求一个树中所有节点能到达的最远距离f[i]。要用两个dfs。 首先第一个dfs求出所有每个节点i在其子树中的正向最大距离和正向次大距离和dist[...
  • u013480600
  • u013480600
  • 2014年03月22日 22:38
  • 1458

hdu 2196 Computer 树形dp模板题

Computer Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total...
  • u012845138
  • u012845138
  • 2014年04月29日 16:15
  • 310

HDU2196 Computer (树形dp或树的直径)

题意给定一个n个点的树,两点之间的距离定义为他们两点之间最短路经过的边数,问对于每个i,其它点距离i最远是多少(n小于等于100000)题解首先将这棵树转换为有根树 方法一:(利用树的直径) 求出...
  • ganjingxian
  • ganjingxian
  • 2017年12月02日 07:54
  • 26
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:[HDU 2196] Computer (树形dp)
举报原因:
原因补充:

(最多只允许输入30个字)