题目
题目描述:
省政府“畅通工程”的目标是使全省任何两个村庄间都可以实现公路交通(但不一定有直接的公路相连,只要能间接通过公路可达即可)。经过调查评估,得到的统计表中列出了有可能建设公路的若干条道路的成本。现请你编写程序,计算出全省畅通需要的最低成本。
输入:
测试输入包含若干测试用例。每个测试用例的第1行给出评估的道路条数 N、村庄数目M (N, M < =100 );随后的 N 行对应村庄间道路的成本,每行给出一对正整数,分别是两个村庄的编号,以及此两村庄间道路的成本(也是正整数)。为简单起见,村庄从1到M编号。当N为0时,全部输入结束,相应的结果不要输出。
输出:
对每个测试用例,在1行里输出全省畅通需要的最低成本。若统计数据不足以保证畅通,则输出“?”。
样例输入:
3 3
1 2 1
1 3 2
2 3 4
1 3
2 3 2
0 100
样例输出:
3
?思路
这道题就是并查集判断图是否连通,然后kruskal算法求最小生成树,而且我本身没有对代码进行任何优化,但是这次代码在时间复杂度和空间复杂度的排行上排第一,截图纪念一下:

AC代码
#include <stdio.h>
#include <stdlib.h>
struct path
{
int u, v, len;
};
int father[101];
int find_set(int x)
{
while (x != father[x]) {
x = father[x];
}
return x;
}
void union_set(int x, int y)
{
int px, py;
px = find_set(x);
py = find_set(y);
if (px != py) {
father[px] = py;
}
}
int compare(const void *p, const void *q)
{
const struct path *a = p;
const struct path *b = q;
return a->len - b->len;
}
int main()
{
int i, n, m, mst;
struct path path[101];
while (scanf("%d %d", &m, &n) != EOF && m != 0) {
for (i = 1; i <= n; i ++) {
father[i] = i;
}
for (i = 0; i < m; i ++) {
scanf("%d %d %d", &path[i].u, &path[i].v, &path[i].len);
}
qsort(path, m, sizeof(path[0]), compare);
int px, py;
for (i = mst = 0; i < m; i ++) {
px = find_set(path[i].u);
py = find_set(path[i].v);
if (px != py) {
mst += path[i].len;
union_set(px, py);
}
}
int flag;
for (flag = 0, i = 1; i <= n; i ++) {
if (father[i] == i) {
flag ++;
if (flag >= 2) {
break;
}
}
}
if (flag == 1) {
printf("%d\n", mst);
}else {
printf("?\n");
}
}
return 0;
}
/**************************************************************
Problem: 1024
User: wangzhengyi
Language: C
Result: Accepted
Time:10 ms
Memory:908 kb
****************************************************************/


被折叠的 条评论
为什么被折叠?



