关闭

目标跟踪系列四:Modeling and Propagating CNNs in a Tree Structure for Visual Tracking (2016年8月)

文章是2016年8月放到arvix上的,看格式应该是投到CVPR2017了,Korea的POSTECH这个团队做的,之前比较有名的还有MDNet和CNN-SVM,相信大家应该不陌生哈。 这篇文章的简称是TCNN(树结构的CNN),是VOT2016的冠军,效果很棒,想法也蛮有新意,下面听我一一道来。...
阅读(1465) 评论(1)

目标跟踪系列三:ECO: Efficient Convolution Operators for Tracking(2016年11月)

Visual Tracking领域大牛(至少我认为是这个领域的大牛)Martin Danelljan又出新作。继C-COT之后又一刷新纪录的作品。不管是从结果还是速度上都有提升,尤其是速度提升明显。用传统特征HOG+CN的版本速度有60+FPS,用CNN+HOG+CN的速度有8FPS,从跟踪效果来看,个人认为可以算一个出色的作品。 C-COT是2016年ECCV的文章,下次有空再讲。 ECO文...
阅读(4151) 评论(5)

林轩田机器学习基石——Non-Separable Data

回顾一下PLA(PerceptronLearning Algorithm)是线性分类器,每次发现一个错误分类的样本,就对超平面进行更新。 上一课主要证明了PLA算法在数据为线性可分的情况下,是能够终止,找到最终能够准确分类数据的超平面的。 在证明中是用到了理想的超平面Wf,实际上它是未知的,如果已知的话我们也就不用花力气去计算PLA了。还有一个问题是我们的训练数据D是否是线性可...
阅读(684) 评论(0)

林轩田机器学习基石——Guarantee of PLA

PLA: PerceptronLearning Algorithm 这节课介绍了什么情况下PLA算法能够终止,终止条件是什么? 1. 线性可分性 PLA能够终止的条件,即 no more mistakes,所有的点都被找到的超平面正确的分类,无一例外。 那么首先,我们的数据集就需要是线性可分的(Linear Separability),只有所有的数据点是线性可分的,才有可能找到一个能够将它...
阅读(819) 评论(0)

xrandr: Failed to get size of gamma for output default

新装的Ubuntu14.04分辨率只有两种1024x768和800x600,没有我想要的1920x1080,之前一直没弄清楚是什么问题,就按照网上的各种教程弄, 按照这个系列的命令: xrandr --newmode。。。 但是一直不成功,报错: xrandr: Failed to get size of gamma for output default X Error of fai...
阅读(871) 评论(0)

ros与vrep通信:ROS Indigo+ubuntu14.04.4+V-REP_PRO_EDU_V3_3_1_64_Linux

如何完整地安装vrep,以及与ros的通讯模块...
阅读(1318) 评论(0)

ros vrep bridge遇到的奇怪问题

VREP版本:V-REP_PRO_EDU_V3_3_1_64_Linux ROS:indigo 要使得两者能够互相通信,需要装ros vrep bridge。在装的时候遇到了两个奇怪的问题。...
阅读(750) 评论(0)

LeetCode记录二:Find the Difference

原题: Given two strings s and t which consist of only lowercase letters. String t is generated by random shuffling string s and then add one more letter at a random position. Find the letter ...
阅读(125) 评论(0)

LeetCode记录一: Island Perimeter

Island Perimeter:You are given a map in form of a two-dimensional integer grid where 1 represents land and 0 represents water. Grid cells are connected horizontally/vertically (not diagonally). The grid is comp...
阅读(209) 评论(0)

图像检索系列一:Deep Learning of Binary Hash Codes for Fast Image Retrieval

这篇文章的想法很巧妙,在一个深层CNN的最后一个全连接层(fc8)和倒数第二个全连接层(fc7)之间加了一层全连接隐层,就是图一中绿色的latent layer (H)。这样一来,既可以得到深层的CNN特征,文中主要用的是fc7的特征,还可以得到二分的哈希编码,即来自H。这个隐层H不仅是对fc7的一个特征概括,而且是一个连接CNN网络的中层特征与高层特征的桥梁。...
阅读(1990) 评论(3)

目标跟踪系列二:Staple: Complementary Learners for Real-Time Tracking(2016CVPR)

文章链接:http://arxiv.org/pdf/1512.01355 1.      考虑了两种方法的结合。Learning the template score(相关滤波)+ Learning the histogram score(简单的颜色直方图) 2.      相关滤波对运动模糊和照度很鲁棒,showing great robustness to challenging...
阅读(2617) 评论(3)

深度学习笔记一:生成对抗网络(Generative Adversarial Nets)

文章链接:http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf 已经有段时间没看过Deep learning的东西了,最近要重新捡起来了。从生成对抗网络(GAN)开始。 这是Goodfellow的scholar主页,没看过的可以去膜拜一下。 与GAN相关的最新的推荐文章: Unsupervised and Semi...
阅读(4673) 评论(0)

目标跟踪系列一:压缩跟踪(compressive tracking)

入坑满两年,决定开始写关于目标跟踪的博客了,欢迎批评指正。 主要关注的是single-object, short-term, model-free visual tracking problem. 即单目标,短时,无模型目标跟踪问题。 一开始是因为要做本科毕设,那时候毫无头绪,也不知道该用什么方法,对这个领域一无所知。就在网上随便看,看到了当时很有名的一篇文章,叫压缩跟踪(CT):...
阅读(752) 评论(0)

关于ImportError: xxxx.so: undefined symbol: PyFPE_jbuf的解决方案

最近在学着用caffe,总是遇到各种各样奇怪的问题。有时候搜遍整个google也找不到解决方案。所以一个问题都能耗上好几天。 闲话少说,下面说一下这两天遇到的一个问题。就是在caffe中需要用到Python的一些的库,比如说pandas,Cython等的时候,明明安装成功了这个库,却无法import报这样的错: 这个问题昨天也遇到,是import pandas的时候报的错,当时是hasht...
阅读(3838) 评论(2)
    个人资料
    • 访问:24475次
    • 积分:418
    • 等级:
    • 排名:千里之外
    • 原创:14篇
    • 转载:0篇
    • 译文:0篇
    • 评论:14条