OPENCV中SVM机器学习功能的简单示例

原创 2017年03月30日 10:54:51

最近在搞机器学习,使用SVM机器学习,解决了工作中的一个文本分类的任务,使用复旦大学的语料库测试,准确率还是很高的,觉得SVM太好用了。

技痒之下忍不住要分享,但肯定不能把工作的代码放到这里来,所以我写了一个有启发的示例程序上来供大家参考。

使用这个示例程序的前置条件是:要安装配置好OpenCV的开发环境。本示例程序的开发环境是VS2015。示例程序如下:


#include "opencv2\core.hpp"
#include "opencv2\imgproc.hpp"
#include "opencv2\imgcodecs.hpp"
#include "opencv2\highgui.hpp"
#include "opencv2\ml.hpp"

using namespace cv;
using namespace cv::ml;

int main(int, char**)
{
	int width = 512, height = 512;						//512*512 的正方形区域
	Mat image = Mat::zeros(height, width, CV_8UC3);

	int labels[8] = { 1, 1, 0, 0, 1, 1, 0, 0};			//8 个结果
	Mat labelsMat(8, 1, CV_32SC1, labels);

	float trainingData[8][2] = { {10, 10},				//8 样本点(和结果对应)
								 {10, 50},
								 {501, 255},
								 {500, 501},
								 {40,30},
								 {70, 60},
								 {300,300},
								 {60, 500} };
	Mat trainingDataMat(8, 2, CV_32FC1, trainingData);

	Ptr<SVM> svm = SVM::create();
	svm->setType(SVM::C_SVC);			// 类型
	svm->setKernel(SVM::LINEAR);		// 核函数
	Ptr<TrainData> td = TrainData::create(trainingDataMat, ROW_SAMPLE, labelsMat); //样本是按行排列的
	
	svm->train(td);		//训练

	Vec3b green(0, 255, 0), blue(255, 0, 0);
	Mat sampleMat(1, 2, CV_32F);
	float response;
	// 预测512*512正方形区域内的每个点的归类
	for (int i = 0; i < image.rows; ++i)
		for (int j = 0; j < image.cols; ++j)
		{
			sampleMat.at<float>(0, 0) = i;
			sampleMat.at<float>(0, 1) = j;
			response = svm->predict(sampleMat);

			if (response == 1)		//1画绿色
				image.at<Vec3b>(i, j) = green;
			else if (response == 0)	//0画蓝色
				image.at<Vec3b>(i, j) = blue;
		}

	// 标出样本点的位置
 	int thickness = -1;
 	int lineType = 8;
	int x, y;
	Scalar s;
	for (int i = 0; i < 8; i++) {
		if (labels[i]) {
			s = Scalar(255, 0, 255);
		} else {
			s = Scalar(255, 255, 0);
		}
		x = trainingData[i][0];
		y = trainingData[i][1];
		circle(image, Point(x, y), 5, s, thickness, lineType);
	}

	imshow("SVM Simple Example", image); 
	return waitKey(0);
}

程序的运行效果如下:


学习Opencv2.4.9(四)---SVM支持向量机

作者:咕唧咕唧liukun321来自:http://blog.csdn.net/liukun321先来看一下什么是SVM(支持向量机) SVM是一种训练机器学习的算法,可以用于解决分类和回归问题,同时...

[机器学习]基于OpenCV实现最简单的数字识别

http://blog.csdn.net/jinzhuojun/article/details/8579416 本文将基于OpenCV实现简单的数字识别。这里以游戏Angry Birds为例,通过以...

Stanford机器学习---第八讲. 支持向量机SVM

本栏目(Machine learning)包括单参数的线性回归、多参数的线性回归、Octave Tutorial、Logistic Regression、Regularization、神经网络、机器学...

机器学习:SVM学习笔记

机器学习:SVM学习笔记            svm理论在很早以前就有所接触,只不过感觉掌握不是很透彻,今儿上课老师讲了一次,就重新回顾一下。                 早在svm之...

机器学习算法与Python实践之(二)支持向量机(SVM)初级

机器学习算法与Python实践之(二)支持向量机(SVM)初级zouxy09@qq.comhttp://blog.csdn.net/zouxy09        机器学习算法与Python实践这个系列...
  • zouxy09
  • zouxy09
  • 2013年12月12日 23:46
  • 64043

系统学习机器学习之SVM(二)

实际上,之前:http://blog.csdn.net/app_12062011/article/details/50385522的内容,与这里一样,但是,相对来说,这里介绍了整个原理及推到过程,由于...

机器学习之旅---SVM分类器

一、什么是支持向量机(Support Vector Machine)

opencv 机器学习中模型存储问题

KNN ,SVM 解决模型存储的问题

Delphi7高级应用开发随书源码

  • 2003年04月30日 00:00
  • 676KB
  • 下载

OpenCV机器学习库MLL

学习机器学习的时候,基本都是在用Matlab、Python写算法,做测试; 由于最近要用OpenCV写作业,兴起看了看OpenCV的机器学习模块(The Machine Learning Lib...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:OPENCV中SVM机器学习功能的简单示例
举报原因:
原因补充:

(最多只允许输入30个字)