两种常用的全参考图像质量评价指标--PSNR和SSIM

原创 2015年11月18日 16:26:57

1.PSNR(Peak Signal to Noise Ratio)峰值信噪比:

MSE表示当前图像X和参考图像Y的均方误差(Mean Square Error),H、W分别为图像的高度和宽度;

MSE=1H×Wi=1Hj=1W(X(i,j)Y(i,j))2
PSNR的单位是dB,数值越大表示失真越小。n为每像素的比特数,一般的灰度图像取8,即像素灰阶数为256.
PSNR=10log10((2n1)2MSE)
PSNR是最普遍和使用最为广泛的一种图像客观评价指标,然而它是基于对应像素点间的误差,即基于误差敏感的图像质量评价。由于并未考虑到人眼的视觉特性(人眼对空间频率较低的对比差异敏感度较高,人眼对亮度对比差异的敏感度较色度高,人眼对一个区域的感知结果会受到其周围邻近区域的影响等),因而经常出现评价结果与人的主观感觉不一致的情况。

Matlab的函数代码实现如下:

function [ out ] = psnr( X,Y )
[ m,n ] = size( X );
mse = sum(( double(X(:)) - double(Y(:)) ).^2);
mse = mse/(m*n);
out = 10*log10((255*255)/mse);
end

2.SSIM(Structural Similarity)结构相似性:

SSIM(Structural Similarity)结构相似性

μXμY分别表示图像X和Y的均值,σXσY分别表示图像X和Y的方差,σXY表示图像X和Y的协方差,即

μX=1H×Wi=1Hj=1WX(i,j)

σX=(1H×W1i=1Hj=1W(X(i,j)μX)2)12

σXY=1H×W1i=1Hj=1W(X(i,j)μX)(Y(i,j)μY)

SSIM分别从亮度、对比度、结构三方面度量图像相似性。
l(X,Y)=2μXμY+C1μ2X+μ2Y+C1

c(X,Y)=2σXσY+C2σ2X+σ2Y+C2

s(X,Y)=σXY+C3σXσY+C3

C1C2C3为常数,为了避免分母为0的情况,通常取C1=(K1L)2, C2=(K2L)2, C3=C22, 一般地K1=0.01, K2=0.03, L=255. 则
SSIM(X,Y)=l(X,Y)c(X,Y)s(X,Y)
SSIM取值范围[0,1],值越大,表示图像失真越小.
SSIM的特殊形式如下:
SSIM(X,Y)=(2μXμY+C1)(2σXY+C2)(μ2X+μ2Y+C1)(σ2X+σ2Y+C2)


MSSIM(Mean Structural Similarity )平均结构相似性

在实际应用中,可以利用滑动窗将图像分块,令分块总数为N,考虑到窗口形状对分块的影响,采用加权计算每一窗口的均值、方差以及协方差,权值wij满足ijwij=1,通常采用高斯核,然后计算对应块的结构相似度SSIM,最后将平均值作为两图像的结构相似性度量,即平均结构相似性MSSIM:

μX=i=1Hj=1WwijX(i,j)

σX=(i=1Hj=1Wwij(X(i,j)μX))12

σXY=i=1Hj=1Wwij(X(i,j)μX)(Y(i,j)μY)

MSSIM=1Nk=1NSSIM(xk,yk)

Matlab的函数实现代码如下:

function [mssim, ssim_map] = ssim_index(img1, img2, K, window, L)
C1 = (K(1)*L)^2;
C2 = (K(2)*L)^2;
window = window/sum(sum(window));
img1 = double(img1);
img2 = double(img2);

mu1   = filter2(window, img1, 'valid');
mu2   = filter2(window, img2, 'valid');
mu1_sq = mu1.*mu1;
mu2_sq = mu2.*mu2;
mu1_mu2 = mu1.*mu2;
sigma1_sq = filter2(window, img1.*img1, 'valid') - mu1_sq;
sigma2_sq = filter2(window, img2.*img2, 'valid') - mu2_sq;
sigma12 = filter2(window, img1.*img2, 'valid') - mu1_mu2;

if (C1 > 0 & C2 > 0)
   ssim_map = ((2*mu1_mu2 + C1).*(2*sigma12 + C2))./((mu1_sq + mu2_sq + C1).*(sigma1_sq + sigma2_sq + C2));
else
   numerator1 = 2*mu1_mu2 + C1;
   numerator2 = 2*sigma12 + C2;
   denominator1 = mu1_sq + mu2_sq + C1;
   denominator2 = sigma1_sq + sigma2_sq + C2;
   ssim_map = ones(size(mu1));
   index = (denominator1.*denominator2 > 0);
   ssim_map(index) = (numerator1(index).*numerator2(index))./(denominator1(index).*denominator2(index));
   index = (denominator1 ~= 0) & (denominator2 == 0);
   ssim_map(index) = numerator1(index)./denominator1(index);
end

mssim = mean2(ssim_map);

return
版权声明:本文为博主原创文章,未经博主允许不得转载。

评估图像质量评价算法性能的几个常用的标准

图像质量评价性能标准 SROCC KROCC PLCC rMSE

图像压缩质量评价PSNR和SSIM

全参考客观视频质量评价方法是指把原始参考视频与失真视频在每一个对应帧中的每一个对应像素之问进行比较。准确的讲,这种方法得到的并不是真正的视频质量,而是失真视频相对于原始视频的相似程度或保真程度。常用的...

全参考视频质量评价方法(PSNR,SSIM)以及相关数据库

最常用的全参考视频质量评价方法有以下2种: PSNR(峰值信噪比):用得最多,但是其值不能很好地反映人眼主观感受。一般取值范围:20-40.值越大,视频质量越好。 SSIM(结构相似性):计算稍复杂,...

图像质量的客观评估指标PSNR与SSIM

图像质量的客观评估指标PSNR与SSIM PSNR SSIM 代码 参考文献 1:PSNRPSNR是最为常用的图像质量评估指标: 其中K为图像对应二进制位数,一般为8。MSE为均方误差,计算...

Delphi7高级应用开发随书源码

  • 2003年04月30日 00:00
  • 676KB
  • 下载

OpenCv中图像PSNR和SSIM的计算

double psnr(Mat &I1, Mat &I2){ Mat s1; absdiff(I1, I2, s1); s1.convertTo(s1, CV_32F); s1 = s1.mu...

Delphi7高级应用开发随书源码

  • 2003年04月30日 00:00
  • 676KB
  • 下载

图像处理结果的度量 —— SNR、PSNR、SSIM

衡量两幅图像的相似度: SNR/PSNR SSIM 1. SNR vs PSNRabout SNR 和 PSNR2. SSIMSSIM(structural similarity index),结构...

衡量两幅图像相似度的指标SNR(signal to noise ratio)和PSNR(peak signal to noise ratio)SSIM(structural similarity in

官方网站:https://ece.uwaterloo.ca/~z70wang/research/ssim/ 1、SSIM structural similarity index   ...

解析PSNR和SSIM

PSNR(Peak Signal to Noise Ratio)峰值信噪比,一种全参考的图像质量评价指标。 其中,MSE表示当前图像X和参考图像Y的均方误差(Mean Square Er...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:两种常用的全参考图像质量评价指标--PSNR和SSIM
举报原因:
原因补充:

(最多只允许输入30个字)