关闭

两种常用的全参考图像质量评价指标--PSNR和SSIM

标签: psnrssim图像质量评价结构相似性信噪比
2084人阅读 评论(0) 收藏 举报
分类:

1.PSNR(Peak Signal to Noise Ratio)峰值信噪比:

MSE表示当前图像X和参考图像Y的均方误差(Mean Square Error),H、W分别为图像的高度和宽度;

MSE=1H×Wi=1Hj=1W(X(i,j)Y(i,j))2
PSNR的单位是dB,数值越大表示失真越小。n为每像素的比特数,一般的灰度图像取8,即像素灰阶数为256.
PSNR=10log10((2n1)2MSE)
PSNR是最普遍和使用最为广泛的一种图像客观评价指标,然而它是基于对应像素点间的误差,即基于误差敏感的图像质量评价。由于并未考虑到人眼的视觉特性(人眼对空间频率较低的对比差异敏感度较高,人眼对亮度对比差异的敏感度较色度高,人眼对一个区域的感知结果会受到其周围邻近区域的影响等),因而经常出现评价结果与人的主观感觉不一致的情况。

Matlab的函数代码实现如下:

function [ out ] = psnr( X,Y )
[ m,n ] = size( X );
mse = sum(( double(X(:)) - double(Y(:)) ).^2);
mse = mse/(m*n);
out = 10*log10((255*255)/mse);
end

2.SSIM(Structural Similarity)结构相似性:

SSIM(Structural Similarity)结构相似性

μXμY分别表示图像X和Y的均值,σXσY分别表示图像X和Y的方差,σXY表示图像X和Y的协方差,即

μX=1H×Wi=1Hj=1WX(i,j)

σX=(1H×W1i=1Hj=1W(X(i,j)μX)2)12

σXY=1H×W1i=1Hj=1W(X(i,j)μX)(Y(i,j)μY)

SSIM分别从亮度、对比度、结构三方面度量图像相似性。
l(X,Y)=2μXμY+C1μ2X+μ2Y+C1

c(X,Y)=2σXσY+C2σ2X+σ2Y+C2

s(X,Y)=σXY+C3σXσY+C3

C1C2C3为常数,为了避免分母为0的情况,通常取C1=(K1L)2, C2=(K2L)2, C3=C22, 一般地K1=0.01, K2=0.03, L=255. 则
SSIM(X,Y)=l(X,Y)c(X,Y)s(X,Y)
SSIM取值范围[0,1],值越大,表示图像失真越小.
SSIM的特殊形式如下:
SSIM(X,Y)=(2μXμY+C1)(2σXY+C2)(μ2X+μ2Y+C1)(σ2X+σ2Y+C2)


MSSIM(Mean Structural Similarity )平均结构相似性

在实际应用中,可以利用滑动窗将图像分块,令分块总数为N,考虑到窗口形状对分块的影响,采用加权计算每一窗口的均值、方差以及协方差,权值wij满足ijwij=1,通常采用高斯核,然后计算对应块的结构相似度SSIM,最后将平均值作为两图像的结构相似性度量,即平均结构相似性MSSIM:

μX=i=1Hj=1WwijX(i,j)

σX=(i=1Hj=1Wwij(X(i,j)μX))12

σXY=i=1Hj=1Wwij(X(i,j)μX)(Y(i,j)μY)

MSSIM=1Nk=1NSSIM(xk,yk)

Matlab的函数实现代码如下:

function [mssim, ssim_map] = ssim_index(img1, img2, K, window, L)
C1 = (K(1)*L)^2;
C2 = (K(2)*L)^2;
window = window/sum(sum(window));
img1 = double(img1);
img2 = double(img2);

mu1   = filter2(window, img1, 'valid');
mu2   = filter2(window, img2, 'valid');
mu1_sq = mu1.*mu1;
mu2_sq = mu2.*mu2;
mu1_mu2 = mu1.*mu2;
sigma1_sq = filter2(window, img1.*img1, 'valid') - mu1_sq;
sigma2_sq = filter2(window, img2.*img2, 'valid') - mu2_sq;
sigma12 = filter2(window, img1.*img2, 'valid') - mu1_mu2;

if (C1 > 0 & C2 > 0)
   ssim_map = ((2*mu1_mu2 + C1).*(2*sigma12 + C2))./((mu1_sq + mu2_sq + C1).*(sigma1_sq + sigma2_sq + C2));
else
   numerator1 = 2*mu1_mu2 + C1;
   numerator2 = 2*sigma12 + C2;
   denominator1 = mu1_sq + mu2_sq + C1;
   denominator2 = sigma1_sq + sigma2_sq + C2;
   ssim_map = ones(size(mu1));
   index = (denominator1.*denominator2 > 0);
   ssim_map(index) = (numerator1(index).*numerator2(index))./(denominator1(index).*denominator2(index));
   index = (denominator1 ~= 0) & (denominator2 == 0);
   ssim_map(index) = numerator1(index)./denominator1(index);
end

mssim = mean2(ssim_map);

return
2
0

猜你在找
【直播】机器学习&数据挖掘7周实训--韦玮
【套餐】系统集成项目管理工程师顺利通关--徐朋
【直播】3小时掌握Docker最佳实战-徐西宁
【套餐】机器学习系列套餐(算法+实战)--唐宇迪
【直播】计算机视觉原理及实战--屈教授
【套餐】微信订阅号+服务号Java版 v2.0--翟东平
【直播】机器学习之矩阵--黄博士
【套餐】微信订阅号+服务号Java版 v2.0--翟东平
【直播】机器学习之凸优化--马博士
【套餐】Javascript 设计模式实战--曾亮
查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:2100次
    • 积分:42
    • 等级:
    • 排名:千里之外
    • 原创:1篇
    • 转载:0篇
    • 译文:0篇
    • 评论:0条
    文章分类
    文章存档