两种常用的全参考图像质量评价指标--PSNR和SSIM

原创 2015年11月18日 16:26:57

1.PSNR(Peak Signal to Noise Ratio)峰值信噪比:

MSE表示当前图像X和参考图像Y的均方误差(Mean Square Error),H、W分别为图像的高度和宽度;

MSE=1H×Wi=1Hj=1W(X(i,j)Y(i,j))2
PSNR的单位是dB,数值越大表示失真越小。n为每像素的比特数,一般的灰度图像取8,即像素灰阶数为256.
PSNR=10log10((2n1)2MSE)
PSNR是最普遍和使用最为广泛的一种图像客观评价指标,然而它是基于对应像素点间的误差,即基于误差敏感的图像质量评价。由于并未考虑到人眼的视觉特性(人眼对空间频率较低的对比差异敏感度较高,人眼对亮度对比差异的敏感度较色度高,人眼对一个区域的感知结果会受到其周围邻近区域的影响等),因而经常出现评价结果与人的主观感觉不一致的情况。

Matlab的函数代码实现如下:

function [ out ] = psnr( X,Y )
[ m,n ] = size( X );
mse = sum(( double(X(:)) - double(Y(:)) ).^2);
mse = mse/(m*n);
out = 10*log10((255*255)/mse);
end

2.SSIM(Structural Similarity)结构相似性:

SSIM(Structural Similarity)结构相似性

μXμY分别表示图像X和Y的均值,σXσY分别表示图像X和Y的方差,σXY表示图像X和Y的协方差,即

μX=1H×Wi=1Hj=1WX(i,j)

σX=(1H×W1i=1Hj=1W(X(i,j)μX)2)12

σXY=1H×W1i=1Hj=1W(X(i,j)μX)(Y(i,j)μY)

SSIM分别从亮度、对比度、结构三方面度量图像相似性。
l(X,Y)=2μXμY+C1μ2X+μ2Y+C1

c(X,Y)=2σXσY+C2σ2X+σ2Y+C2

s(X,Y)=σXY+C3σXσY+C3

C1C2C3为常数,为了避免分母为0的情况,通常取C1=(K1L)2, C2=(K2L)2, C3=C22, 一般地K1=0.01, K2=0.03, L=255. 则
SSIM(X,Y)=l(X,Y)c(X,Y)s(X,Y)
SSIM取值范围[0,1],值越大,表示图像失真越小.
SSIM的特殊形式如下:
SSIM(X,Y)=(2μXμY+C1)(2σXY+C2)(μ2X+μ2Y+C1)(σ2X+σ2Y+C2)


MSSIM(Mean Structural Similarity )平均结构相似性

在实际应用中,可以利用滑动窗将图像分块,令分块总数为N,考虑到窗口形状对分块的影响,采用加权计算每一窗口的均值、方差以及协方差,权值wij满足ijwij=1,通常采用高斯核,然后计算对应块的结构相似度SSIM,最后将平均值作为两图像的结构相似性度量,即平均结构相似性MSSIM:

μX=i=1Hj=1WwijX(i,j)

σX=(i=1Hj=1Wwij(X(i,j)μX))12

σXY=i=1Hj=1Wwij(X(i,j)μX)(Y(i,j)μY)

MSSIM=1Nk=1NSSIM(xk,yk)

Matlab的函数实现代码如下:

function [mssim, ssim_map] = ssim_index(img1, img2, K, window, L)
C1 = (K(1)*L)^2;
C2 = (K(2)*L)^2;
window = window/sum(sum(window));
img1 = double(img1);
img2 = double(img2);

mu1   = filter2(window, img1, 'valid');
mu2   = filter2(window, img2, 'valid');
mu1_sq = mu1.*mu1;
mu2_sq = mu2.*mu2;
mu1_mu2 = mu1.*mu2;
sigma1_sq = filter2(window, img1.*img1, 'valid') - mu1_sq;
sigma2_sq = filter2(window, img2.*img2, 'valid') - mu2_sq;
sigma12 = filter2(window, img1.*img2, 'valid') - mu1_mu2;

if (C1 > 0 & C2 > 0)
   ssim_map = ((2*mu1_mu2 + C1).*(2*sigma12 + C2))./((mu1_sq + mu2_sq + C1).*(sigma1_sq + sigma2_sq + C2));
else
   numerator1 = 2*mu1_mu2 + C1;
   numerator2 = 2*sigma12 + C2;
   denominator1 = mu1_sq + mu2_sq + C1;
   denominator2 = sigma1_sq + sigma2_sq + C2;
   ssim_map = ones(size(mu1));
   index = (denominator1.*denominator2 > 0);
   ssim_map(index) = (numerator1(index).*numerator2(index))./(denominator1(index).*denominator2(index));
   index = (denominator1 ~= 0) & (denominator2 == 0);
   ssim_map(index) = numerator1(index)./denominator1(index);
end

mssim = mean2(ssim_map);

return
版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

解析PSNR和SSIM

PSNR(Peak Signal to Noise Ratio)峰值信噪比,一种全参考的图像质量评价指标。 其中,MSE表示当前图像X和参考图像Y的均方误差(Mean Square Er...

全参考客观视频质量评价方法 (MSE, PSNR,SSIM)原理

全参考视频质量评价方法是指把原始参考视频与失真视频在每一个对应帧中的每一个对应像素之问进行比较。准确的讲,这种方法得到的并不是真正的视频质量,而是失真视频相对于原始视频的相似程度或保真程度。最简单的方...

图像质量的客观评估指标PSNR与SSIM

图像质量的客观评估指标PSNR与SSIM PSNR SSIM 代码 参考文献 1:PSNRPSNR是最为常用的图像质量评估指标: 其中K为图像对应二进制位数,一般为8。MSE为均方误差,计算...

数字图像处理,若干图像质量评价指标的实现

首先从图像质量大的分类方法来看,可分为主管评价和客观评价! 其次,客观评价又根据其对参考图像的依赖程度, 可分成三类。 (1)全参考:需要和参考图像上的像素点做一一对应的比较; (2)半参考:只需要和...

教你如何迅速秒杀掉:99%的海量数据处理面试题

教你如何迅速秒杀掉:99%的海量数据处理面试题作者:July出处:结构之法算法之道blog前言   一般而言,标题含有“秒杀”,“99%”,“史上最全/最强”等词汇的往往都脱不了哗众取宠之嫌,但进一步...

视频客观质量评价工具:MSU Video Quality Measurement Tool

MSU Video Quality Measurement Tool(msu vqmt)是一种客观视频质量评价程序。它提供了多种全参考视频质量评价方法(对比两个视频)和无参考视频质量评价方法(分析一个...

回想那些年我抛弃的技术

10几年了我抛弃的技术

没有以后...

想想都心酸...今天下班后去一家店买饺子,等候的时候,一个矮小的老太太走过来,穿着清洁工的制服,她问,肉包子多少钱一个。店主回答1.5元。然后她掏出几张零票,买了一个肉包子。看到我站在一边,就自己给自...

[总结]视音频编解码技术零基础学习方法

一直想把视音频编解码技术做一个简单的总结,可是苦于时间不充裕,一直没能完成。今天有着很大的空闲,终于可以总结一个有关视音频技术的入门教程,可以方便更多的人学习从零开始学习视音频技术。需要注意的是,本文...

CSDN《老友记》简记

上周参加了CSDN主办的SDCC 2015 (中国软件开发者大会) 中的《老友记》活动。《老友记》中云集了CSDN员工、社区专家、合作伙伴等各种IT行业的朋友。这次活动是我从2013年开始在CSDN写...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)