KDnuggets热门深度学习工具排行:Pylearn2 居首,Caffe第三

转载 2015年07月10日 15:27:09

KDnuggets热门深度学习工具排行:Pylearn2 居首,Caffe第三

发表于2015-07-08 17:44379次阅读| 来源kdnuggets1 条评论| 作者Ran Bi
摘要:如今深度学习是AI和机器学习领域最热门的学习趋势。我们来审查为深度学习而开发的软件,包括Caffe,CUDA convnet,Deeplearning4j,Pylearn2,Theano和Torch。

如今深度学习是AI和机器学习领域最热门的学习趋势。我们来审查为深度学习而开发的软件,包括Caffe,CUDA convnet,Deeplearning4j,Pylearn2,Theano和Torch。

深度学习是现在人工智能(Artificial Intelligence)和机器学习(Machine Learning)最热门的的趋势,每天的报刊都在报道令人惊异的新成就,比如在IQ测试中超越了人类(doing better than humans on IQ test)。

2015 KDnuggets Software Poll中添加了一个深度学习工具的新类别,民意调查最流行的工具的结果显示如下。

  • Pylearn2 (55 users)
  • Theano (50)
  • Caffe (29)
  • Torch (27)
  • Cuda-convnet (17)
  • Deeplearning4j (12)
  • Other Deep Learning Tools (106)

我没有使用过所有的工具,所以这是基于这些流行工具的主页和教程的简要概述。

Theano&Pylearn2:

Theano和Pylearn2都是在Montreal大学开发出来的,都是由Yoshua Bengio带领的大部分来自于LISA的开发人员参与研发。Theano是一个Python库,你也可以把它看成一个数学表达式编译器。这对于从零开始生成算法是有益的。这里是Theano培训的一个直观的例子。

如果我们要使用标准算法,我们可以写Pylearn2插件作为Theano表达式,并且Theano会优化和稳定这个表达式。它包括多层感知器/RBM/Stacked Denoting Autoencoder/ ConvNets所需的所有的东西。这里是一个快速入门教程来引导您完成Pylearn2的一些基本思路的学习。

Caffe:

Caffe是由Berkeley Vision and Learning Center开发的,由贾扬清创建,Evan Shelhamer带领完成。它是一种C ++中ConvNets的快速的和可读的实现。如图所示在其官方页面上, Caffe使用一个单一的NVIDIA GPU K40与AlexNet可以每天处理超过60M的图像。它是一个可用于图像分类的工具包,不擅长其他的深度学习应用程序,如文字或语音。

Torch & OverFeat:

Lua Facebook AI是用Lua编写的,并且为 NYU,Facebook AI实验室和Google DeepMind Torch使用。它要求为机器学习算法提供一个类似于MATLAB的环境。为什么他们选择Lua/ LuaJIT而不是更流行的Python呢?他们在Torch7的说明中这样解释,“Lua容易和C结合,所以在几个小时内的工作中,任何C或C ++库都可以成为一个Lua库。”Lua是用纯ANSI C编写的,所以它可以很容易地编译任意目标。

OverFeat是一个在ImageNet数据集中使用Torch7训练的特征提取器,同样很容易入门。

Cuda:

毫无疑问,最近GPU加速了深度学习的研究。有关GPU的新闻尤其是NVIDIA CUDA遍及互联网。Cuda-convnet/CuDNN支持所有主流软件,例如Caffe,Torch和Theano,都是容易实现的。

Deeplearning4j:

不像上述工具是作为一种研究工具,Deeplearning4j为在商业环境中使用而设计。正如其介绍,DL4J是一种“基于Java的,聚焦工业,商业支持的,分布式的深度学习框架。”

对比

这些工具似乎在速度和易用性方面表示出友好的竞争性。

Caffe的开发者说,“Caffe是最快的可用的convnet实现工具。”

Torch7被证明在大多数基准中比Theano要快,如Torch7指南中所示。

Soumith给出了所有开源实现的convnet基准


Caffe指南中列出了一些流行的深度学习工具的对照表。


有Reddit上有一个关于“最适合深度神经网络的框架”的讨论。 DL4J在其网站上也给出了DL4J vs. Torch vs. Theano vs. Caffe的比较。

原文链接Popular Deep Learning Tools – a review(翻译/王辉 责编/周建丁)

【深度学习:21 天实战 Caffe】课后习题参考答案

自出版以来收到很多读者的反馈,其中一个比较常见的诉求是提供习题答案。 在写作之初只是希望读者阅读完每一章后,能通过习题再对当前章节做一个回顾,将学到的知识迅速投入实战,或者扩展知识面,了解更多相关内容...
  • kkk584520
  • kkk584520
  • 2016年10月16日 21:31
  • 8086

深度学习(六)caffe入门学习

本文主要讲解caffe的整个使用流程,适用于初级入门caffe,通过学习本篇博文,理清项目训练、测试流程。初级教程,高手请绕道。 我们知道,在caffe编译完后,在caffe目录下会生成一个build...
  • hjimce
  • hjimce
  • 2015年10月06日 19:48
  • 38552

2017年首份中美数据科学对比报告,Python受欢迎度排名第一,美国数据工作者年薪中位数高达11万美金

你想知道的关于数据科学的一切调查都在这里:薪资、从业年龄、使用语言、数据集……...
  • dQCFKyQDXYm3F8rB0
  • dQCFKyQDXYm3F8rB0
  • 2017年10月31日 14:38
  • 5635

Windows7+Anaconda+Theano+Pylearn2深度学习环境搭建

Windows7+Anaconda+Theano+Pylearn2深度学习环境搭建
  • ZhuiMengXiaoZi2015
  • ZhuiMengXiaoZi2015
  • 2015年11月12日 13:42
  • 5605

深度学习工具 caffe 源码

  • 2015年06月04日 15:44
  • 4.32MB
  • 下载

MIT技术评论评选2013十大突破性技术:深度学习居首

日前,《MIT技术评论》选出2013十大突破性科学技术: 1. 深度学习 Deep Learning 伴随着人工智能的不断进步,机器现在可以“感知、识别、记忆,模拟人脑的思维做出响应”。 ...
  • shuimuqingyi
  • shuimuqingyi
  • 2013年04月28日 17:20
  • 423

MIT技术评论评选2013十大突破性技术:深度学习居首

MIT技术评论评选2013十大突破性技术:深度学习居首 发表于7小时前| 3545次阅读| 来源CSDN| 12 条评论| 作者王晖 MIT技术大数据深度学习3D打印社交媒体可...
  • foreverdengwei
  • foreverdengwei
  • 2013年04月26日 17:10
  • 570

【深度学习框架Caffe学习与应用】第三课 将图片数据转化为LMDB数据``

1.将图片数据转化为LMDB数据 第一步:创建图片文件列表清单,一般为一个txt文件,一行一张图片 我在caffe/data/目录下新建一个test_data的文件夹,里面放训练集及数据集 ...
  • weixin_36340947
  • weixin_36340947
  • 2017年11月23日 17:25
  • 47

【深度学习框架Caffe学习与应用】第三课 使用训练好的模型

1.均值文件 将所有训练样本的均值保存为文件。 首先将计算均值文件的caffe工具compute_image_mean放到当前目录:caffe/test/mnist/下面,之后运行如下命令: ...
  • weixin_36340947
  • weixin_36340947
  • 2017年11月24日 11:32
  • 99

【深度学习】【caffe实用工具2】笔记24 Windows下【Caffe实用工具】之【计算图像均值】compute_image_mean的用法

/***************************************************************************************************...
  • maweifei
  • maweifei
  • 2017年08月09日 17:30
  • 334
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:KDnuggets热门深度学习工具排行:Pylearn2 居首,Caffe第三
举报原因:
原因补充:

(最多只允许输入30个字)