神经网络理论 超全超详细 通熟易懂

神经网络

  (2011-04-05 11:57:03)
标签: 

杂谈


http://blog.sina.com.cn/s/blog_48ee23c80100rmkx.html
本文主要内容包括: (1) 介绍神经网络基本原理,(2) AForge.NET实现前向神经网络的方法,(3) Matlab实现前向神经网络的方法 。


第0节、引例 

       本文以Fisher的Iris数据集作为神经网络程序的测试数据集。Iris数据集可以在http://en.wikipedia.org/wiki/Iris_flower_data_set  找到。这里我简要介绍一下Iris数据集:

有一批Iris花,已知这批Iris花可分为3个品种,现需要对其进行分类。已知不同品种的Iris花的花萼长度、花萼宽度、花瓣长度、花瓣宽度会有差异。而且我们还有一批已知品种的Iris花的花萼长度、花萼宽度、花瓣长度、花瓣宽度的数据。

  一种解决方法是用已有的数据训练一个神经网络,用作分类器。这也是本文要实现的目的。

  如果你只想用C#或Matlab快速实现神经网络来解决你手头上的问题,或者已经了解神经网络基本原理,请直接跳到第二节——神经网络实现。

  如果你对神经网络基本原理还不清楚,我建议你还是从第一节开始阅读。


第一节、神经网络基本原理 

1. 人工神经元( Artificial Neuron )模型 

       人工神经元是神经网络的基本元素,其原理可以用下图表示:

神经网络

图1. 人工神经元模型

 

       图中x1~xn是从其他神经元传来的输入信号,wij表示表示从神经元j到神经元i的连接权值,θ表示一个阈值 ( threshold ),或称为偏置( bias )。则神经元i的输出与输入的关系表示为:

 神经网络

神经网络

  图中 yi表示神经元i的输出,函数f称为激活函数 ( Activation Function )或转移函数 ( Transfer Function ) ,net称为净激活(net activation)。若将阈值看成是神经元i的一个输入x0的权重wi0,则上面的式子可以简化为:

 神经网络

神经网络

  若用X表示输入向量,用W表示权重向量,即:

X = [ x0 , x1 , x2 , ....... , xn ]

神经网络 

  则神经元的输出可以表示为向量相乘的形式:

 神经网络

 神经网络

       若神经元的净激活net为正,称该神经元处于激活状态或兴奋状态(fire),若净激活net为负,则称神经元处于抑制状态。

       图1中的这种“阈值加权和”的神经元模型称为M-P模型 ( McCulloch-Pitts Model ),也称为神经网络的一个处理单元( PE, Processing Element )


2. 常用激活函数 

       激活函数的选择是构建神经网络过程中的重要环节,下面简要介绍常用的激活函数。

(1) 线性函数 ( Liner Function )

 神经网络

(2) 斜面函数 ( Ramp Function )

 神经网络

(3) 阈值函数 ( Threshold Function )

 神经网络

神经网络

图2 . 阈值函数图像

 

       以上3个激活函数都是线性函数,下面介绍两个常用的非线性激活函数。

(4) S形函数 ( Sigmoid Function )

神经网络

  该函数的导函数:

神经网络

(5) 双极S形函数 

神经网络

  该函数的导函数:

神经网络

  S形函数与双极S形函数的图像如下:

神经网络

图3. S形函数与双极S形函数图像

  双极S形函数与S形函数主要区别在于函数的值域,双极S形函数值域是(-1,1),而S形函数值域是(0,1)。

  由于S形函数与双极S形函数都是可导的(导函数是连续函数),因此适合用在BP神经网络中。(BP算法要求激活函数可导)


3. 神经网络模型 

       神经网络是由大量的神经元互联而构成的网络。根据网络中神经元的互联方式,常见网络结构主要可以分为下面3类:

(1) 前馈神经网络 ( Feedforward Neural Networks )

       前馈网络也称前向网络。这种网络只在训练过程会有反馈信号,而在分类过程中数据只能向前传送,直到到达输出层,层间没有向后的反馈信号,因此被称为前馈网络。感知机( perceptron)与BP神经网络就属于前馈网络。

       图4 中是一个3层的前馈神经网络,其中第一层是输入单元,第二层称为隐含层,第三层称为输出层(输入单元不是神经元,因此图中有2层神经元)。

神经网络

图4. 前馈神经网络

 

  对于一个3层的前馈神经网络N,若用X表示网络的输入向量,W1~W3表示网络各层的连接权向量,F1~F3表示神经网络3层的激活函数。

  那么神经网络的第一层神经元的输出为:

O1 = F1( XW1 )

  第二层的输出为:

O2 = F2 ( F1( XW1 ) W2 )

  输出层的输出为:

O3 = F3( F2 ( F1( XW1 ) W2 ) W3 )

       若激活函数F1~F3都选用线性函数,那么神经网络的输出O3将是输入X的线性函数。因此,若要做高次函数的逼近就应该选用适当的非线性函数作为激活函数。

(2) 反馈神经网络 ( Feedback Neural Networks )

       反馈型神经网络是一种从输出到输入具有反馈连接的神经网络,其结构比前馈网络要复杂得多。典型的反馈型神经网络有:Elman网络和Hopfield网络。

神经网络

图5. 反馈神经网络

 

(3) 自组织网络 ( SOM ,Self-Organizing Neural Networks )

       自组织神经网络是一种无导师学习网络。它通过自动寻找样本中的内在规律和本质属性,自组织、自适应地改变网络参数与结构。

神经网络

图6. 自组织网络

 

4. 神经网络工作方式 

       神经网络运作过程分为学习和工作两种状态。

(1)神经网络的学习状态 

       网络的学习主要是指使用学习算法来调整神经元间的联接权,使得网络输出更符合实际。学习算法分为有导师学习( Supervised Learning )无导师学习( Unsupervised Learning )两类。

       有导师学习算法将一组训练集 ( training set )送入网络,根据网络的实际输出与期望输出间的差别来调整连接权。有导师学习算法的主要步骤包括:

1)  从样本集合中取一个样本(Ai,Bi);

2)  计算网络的实际输出O;

3)  求D=Bi-O;

4)  根据D调整权矩阵W;

5) 对每个样本重复上述过程,直到对整个样本集来说,误差不超过规定范围。

  BP算法就是一种出色的有导师学习算法。

       无导师学习抽取样本集合中蕴含的统计特性,并以神经元之间的联接权的形式存于网络中。

       Hebb学习律是一种经典的无导师学习算法。

(2) 神经网络的工作状态 

       神经元间的连接权不变,神经网络作为分类器、预测器等使用。

  下面简要介绍一下Hebb学习率与Delta学习规则 。

(3) 无导师学习算法:Hebb学习率 

  Hebb算法核心思想是,当两个神经元同时处于激发状态时两者间的连接权会被加强,否则被减弱。 

       为了理解Hebb算法,我觉得有必要简单介绍一下条件反射实验。巴甫洛夫的条件反射实验:每次给狗喂食前都先响铃,时间一长,狗就会将铃声和食物联系起来。以后如果响铃但是不给食物,狗也会流口水。

神经网络

图7. 巴甫洛夫的条件反射实验

 

  受该实验的启发,Hebb的理论认为在同一时间被激发的神经元间的联系会被强化。比如,铃声响时一个神经元被激发,在同一时间食物的出现会激发附近的另一个神经元,那么这两个神经元间的联系就会强化,从而记住这两个事物之间存在着联系。相反,如果两个神经元总是不能同步激发,那么它们间的联系将会越来越弱。

  Hebb学习律可表示为:

神经网络

       其中wij表示神经元j到神经元i的连接权,yi与yj为两个神经元的输出,a是表示学习速度的常数。若yi与yj同时被激活,即yi与yj同时为正,那么Wij将增大。若yi被激活,而yj处于抑制状态,即yi为正yj为负,那么Wij将变小。

(4) 有导师学习算法:Delta学习规则

  Delta学习规则是一种简单的有导师学习算法,该算法根据神经元的实际输出与期望输出差别来调整连接权,其数学表示如下:

神经网络

 

       其中Wij表示神经元j到神经元i的连接权,di是神经元i的期望输出,yi是神经元i的实际输出,xj表示神经元j状态,若神经元j处于激活态则xj为1,若处于抑制状态则xj为0或-1(根据激活函数而定)。a是表示学习速度的常数。假设xi为1,若di比yi大,那么Wij将增大,若di比yi小,那么Wij将变小。

       Delta规则简单讲来就是:若神经元实际输出比期望输出大,则减小所有输入为正的连接的权重,增大所有输入为负的连接的权重。反之,若神经元实际输出比期望输出小,则增大所有输入为正的连接的权重,减小所有输入为负的连接的权重。这个增大或减小的幅度就根据上面的式子来计算。

(5)有导师学习算法:BP算法 

  采用BP学习算法的前馈型神经网络通常被称为BP网络。

神经网络

图8. 三层BP神经网络结构

 

  BP网络具有很强的非线性映射能力,一个3层BP神经网络能够实现对任意非线性函数进行逼近(根据Kolrnogorov定理)。一个典型的3层BP神经网络模型如图7所示。

  BP网络的学习算法占篇幅较大,我打算在下一篇文章中介绍。

 

第二节、神经网络实现 

 

1. 数据预处理 

       在训练神经网络前一般需要对数据进行预处理,一种重要的预处理手段是归一化处理。下面简要介绍归一化处理的原理与方法。

(1) 什么是归一化? 

数据归一化,就是将数据映射到[0,1]或[-1,1]区间或更小的区间,比如(0.1,0.9) 。

(2) 为什么要归一化处理? 

<1>输入数据的单位不一样,有些数据的范围可能特别大,导致的结果是神经网络收敛慢、训练时间长。

<2>数据范围大的输入在模式分类中的作用可能会偏大,而数据范围小的输入作用就可能会偏小。

<3>由于神经网络输出层的激活函数的值域是有限制的,因此需要将网络训练的目标数据映射到激活函数的值域。例如神经网络的输出层若采用S形激活函数,由于S形函数的值域限制在(0,1),也就是说神经网络的输出只能限制在(0,1),所以训练数据的输出就要归一化到[0,1]区间。

<4>S形激活函数在(0,1)区间以外区域很平缓,区分度太小。例如S形函数f(X)在参数a=1时,f(100)与f(5)只相差0.0067。

(3) 归一化算法 

  一种简单而快速的归一化算法是线性转换算法。线性转换算法常见有两种形式:

       <1>

y = ( x - min )/( max - min )

  其中min为x的最小值,max为x的最大值,输入向量为x,归一化后的输出向量为y 。上式将数据归一化到 [ 0 , 1 ]区间,当激活函数采用S形函数时(值域为(0,1))时这条式子适用。

       <2>

y = 2 * ( x - min ) / ( max - min ) - 1

       这条公式将数据归一化到 [ -1 , 1 ] 区间。当激活函数采用双极S形函数(值域为(-1,1))时这条式子适用。

(4) Matlab数据归一化处理函数 

  Matlab中归一化处理数据可以采用premnmx , postmnmx , tramnmx 这3个函数。

<1> premnmx

语法:[pn,minp,maxp,tn,mint,maxt] = premnmx(p,t)

参数:

pn: p矩阵按行归一化后的矩阵

minp,maxp:p矩阵每一行的最小值,最大值

tn:t矩阵按行归一化后的矩阵

mint,maxt:t矩阵每一行的最小值,最大值

作用:将矩阵p,t归一化到[-1,1] ,主要用于归一化处理训练数据集。

<2> tramnmx

语法:[pn] = tramnmx(p,minp,maxp)

参数:

minp,maxp:premnmx函数计算的矩阵的最小,最大值

pn:归一化后的矩阵

作用:主要用于归一化处理待分类的输入数据。

<3> postmnmx

语法: [p,t] = postmnmx(pn,minp,maxp,tn,mint,maxt)

参数:

minp,maxp:premnmx函数计算的p矩阵每行的最小值,最大值

mint,maxt:premnmx函数计算的t矩阵每行的最小值,最大值

作用:将矩阵pn,tn映射回归一化处理前的范围。postmnmx函数主要用于将神经网络的输出结果映射回归一化前的数据范围。

2. 使用Matlab实现神经网络 

使用Matlab建立前馈神经网络主要会使用到下面3个函数:

newff :前馈网络创建函数

train:训练一个神经网络

sim :使用网络进行仿真

 下面简要介绍这3个函数的用法。

(1) newff函数

<1>newff函数语法 

       newff函数参数列表有很多的可选参数,具体可以参考Matlab的帮助文档,这里介绍newff函数的一种简单的形式。

语法:net = newff ( A, B, {C} ,‘trainFun’)

参数:

A:一个n×2的矩阵,第i行元素为输入信号xi的最小值和最大值;

B:一个k维行向量,其元素为网络中各层节点数;

C:一个k维字符串行向量,每一分量为对应层神经元的激活函数

trainFun :为学习规则采用的训练算法

<2>常用的激活函数

  常用的激活函数有:

  a) 线性函数 (Linear transfer function)

f(x) = x

  该函数的字符串为’purelin’。

 

b) 对数S形转移函数( Logarithmic sigmoid transfer function )

神经网络

    该函数的字符串为’logsig’。

c) 双曲正切S形函数 (Hyperbolic tangent sigmoid transfer function )

神经网络

  也就是上面所提到的双极S形函数。

 

  该函数的字符串为’ tansig’。

  Matlab的安装目录下的toolbox\nnet\nnet\nntransfer子目录中有所有激活函数的定义说明。

<3>常见的训练函数

    常见的训练函数有:

traingd :梯度下降BP训练函数(Gradient descent backpropagation)

traingdx :梯度下降自适应学习率训练函数

<4>网络配置参数

一些重要的网络配置参数如下:

net.trainparam.goal  :神经网络训练的目标误差

net.trainparam.show   : 显示中间结果的周期

net.trainparam.epochs  :最大迭代次数

net.trainParam.lr    : 学习率

(2) train函数

    网络训练学习函数。

语法:[ net, tr, Y1, E ]  = train( net, X, Y )

参数:

X:网络实际输入

Y:网络应有输出

tr:训练跟踪信息

Y1:网络实际输出

E:误差矩阵

(3) sim函数

语法:Y=sim(net,X)

参数:

net:网络

X:输入给网络的K×N矩阵,其中K为网络输入个数,N为数据样本数

Y:输出矩阵Q×N,其中Q为网络输出个数

(4) Matlab BP网络实例 

       我将Iris数据集分为2组,每组各75个样本,每组中每种花各有25个样本。其中一组作为以上程序的训练样本,另外一组作为检验样本。为了方便训练,将3类花分别编号为0,1,2 。

       Matlab程序如下:

 

% 读取训练数据,最多读入150行
[x1,x2,x3,x4,g]
  =  textread( ' trainData.txt '  ,  ' %f%f%f%f%f ' , 150 );

% 训练数据归一化
[input,minI,maxI,output,minO,maxO]
  =  premnmx( [x1 , x2 , x3 , x4 ] '  , g '  ) ;

% 创建神经网络
net
  =  newff( minmax(input) , [ 4  1 ] , {  ' logsig '  ' purelin ' } ,  ' traingdx '  ) ;

% 配置参数
net.trainparam.show
  =  50  ;
net.trainparam.epochs
  =  500  ;
net.trainparam.goal
  =  0.001  ;
net.trainParam.lr
  =  0.01  ;

% 训练
net
  =  train( net, input , output ) ;

% 读取测试数据
[x1 x2 x3 x4 x5]
  =  textread( ' testData.txt '  ,  ' %f%f%f%f%f ' , 150 );

% 测试数据归一化
testInput
  =  tramnmx ( [x1,x2,x3,x4] '  , minI, maxI ) ;

% 仿真
Y
  =  sim(net , testInput ) ;

% 仿真结果映射到原来的数据范围
B
  =  postmnmx( Y , minO , maxO )

  以上程序的识别率稳定在95%左右,训练100次左右达到收敛,训练曲线如下图所示:

神经网络

图9. 训练性能表现

 

(5)参数设置对神经网络性能的影响 

       我在实验中通过调整隐含层节点数,选择不通过的激活函数,设定不同的学习率,

 

<1>隐含层节点个数 

  隐含层节点的个数对于识别率的影响并不大,但是节点个数过多会增加运算量,使得训练较慢。

 

<2>激活函数的选择 

       激活函数无论对于识别率或收敛速度都有显著的影响。在逼近高次曲线时,S形函数精度比线性函数要高得多,但计算量也要大得多。

 

<3>学习率的选择 

       学习率影响着网络收敛的速度,以及网络能否收敛。学习率设置偏小可以保证网络收敛,但是收敛较慢。相反,学习率设置偏大则有可能使网络训练不收敛,影响识别效果。

 

3. 使用AForge.NET实现神经网络 

(1) AForge.NET简介 

       AForge.NET是一个C#实现的面向人工智能、计算机视觉等领域的开源架构。AForge.NET源代码下的Neuro目录包含一个神经网络的类库。

AForge.NET主页:http://www.aforgenet.com/

AForge.NET代码下载:http://code.google.com/p/aforge/

Aforge.Neuro工程的类图如下:

 

神经网络

图10. AForge.Neuro类库类图

 

下面介绍图9中的几个基本的类:

Neuron — 神经元的抽象基类

Layer — 层的抽象基类,由多个神经元组成

Network —神经网络的抽象基类,由多个层(Layer)组成

IActivationFunction - 激活函数(activation function)的接口

IUnsupervisedLearning - 无导师学习(unsupervised learning)算法的接口ISupervisedLearning - 有导师学习(supervised learning)算法的接口

 

(2)使用Aforge建立BP神经网络 

       使用AForge建立BP神经网络会用到下面的几个类:

<1>  SigmoidFunction : S形神经网络

  构造函数:public SigmoidFunction( double alpha )

   参数alpha决定S形函数的陡峭程度。

<2>  ActivationNetwork :神经网络类

  构造函数:

  public ActivationNetwork( IActivationFunction function, int inputsCount, params int[] neuronsCount )

                         : base( inputsCount, neuronsCount.Length )

  public virtual double[] Compute( double[] input )

 

参数意义:

inputsCount:输入个数

neuronsCount :表示各层神经元个数

<3>  BackPropagationLearning:BP学习算法

 构造函数:

public BackPropagationLearning( ActivationNetwork network )

 参数意义:

network :要训练的神经网络对象

BackPropagationLearning类需要用户设置的属性有下面2个:

learningRate :学习率

momentum :冲量因子

下面给出一个用AForge构建BP网络的代码。

 

// 创建一个多层神经网络,采用S形激活函数,各层分别有4,5,1个神经元
ActivationNetwork network = new ActivationNetwork(
new SigmoidFunction(2), 4, 5, 1);

// 创建训练算法对象
BackPropagationLearning teacher = new
BackPropagationLearning(network);

// 设置BP算法的学习率与冲量系数
teacher.LearningRate = 0.1;
teacher.Momentum
 = 0;

int iteration = 1 ;

// 迭代训练500次
while( iteration < 500 )
{
teacher.RunEpoch( trainInput , trainOutput ) ;
++iteration ;
}

//使用训练出来的神经网络来分类,t为输入数据向量
network.Compute(t)[0]

 

       改程序对Iris 数据进行分类,识别率可达97%左右 。


     点击这里下载源代码与可执行程序。

  文章来自:http://www.cnblogs.com/heaad/  

  转载请保留出处,thx!


参考文献 

[1] Andrew Kirillov. Neural Networks on C#. [Online].   

http://www.codeproject.com/KB/recipes/aforge_neuro.aspx  2006.10

[2] Sacha Barber. AI : Neural Network for beginners. [Online].

http://www.codeproject.com/KB/recipes/NeuralNetwork_1.aspx  2007.5

[3] Richard O. Duda, Peter E. Hart and David G. Stork. 模式分类. 机械工业出版社. 2010.4

[4] Wikipedia. Iris flower data set. [Online].      

http://en.wikipedia.org/wiki/Iris_flower_data_set 


BP神经网络理论

http://www.cnblogs.com/hellope/archive/2012/07/05/2577814.html

科普:神经网络是一种运算模型,由大量的节点(或称“神经元”,或“单元”)和之间相互联接构成。每个节点代表一种特定的输出函数,称为激励函数(activation function)。每两个节点间的连接都代表一个对于通过该连接信号的加权值,称之为权重(weight),这相当于人工神经网络的记忆。网络的输出则依网络的连接方式,权重值和激励函数的不同而不同。而网络自身通常都是对自然界某种算法或者函数的逼近,也可能是对一种逻辑策略的表达。人工神经网络通常是通过一个基于数学统计学类型的学习方法(Learning Method)得以优化,所以人工神经网络也是数学统计学方法的一种实际应用,通过统计学的标准数学方法我们能够得到大量的可以用函数来表达的局部结构空间,另一方面在人工智能学的人工感知领域,我们通过数学统计学的应用可以来做人工感知方面的决定问题(也就是说通过统计学的方法,人工神经网络能够类似人一样具有简单的决定能力和简单的判断能力),这种方法比起正式的逻辑学推理演算更具有优势。

 

单个神经元(理解神经网络第一步):

 

  • a1~an为输入向量的各个分量
  • w1~wn为神经元各个突触的权值
  • b为偏置bias,或者称之为阈值(threshold
  • f为传递函数,通常为非线性函数。一般有traingd(),tansig(),hardlim()。以下默认为hardlim()
  • t为神经元输出

 数学表示

 

  • 向量W为权向量
  • 向量A为输入向量,做内积需要用到转置
  • b为偏置(bias),或者称之为阈值(threshold)
  • f为传递函数,也即激励函数

带有 sigma 函数(顶部)和 cutoff 函数(底部)

可见,一个神经元的功能是求得输入向量与权向量的内积后,经一个非线性传递函数得到一个标量结果。

单个神经元的作用:把一个n维向量空间用一个超平面分割成两部分(称之为判断边界),给定一个输入向量,神经元可以判断出这个向量位于超平面的哪一边。(SVM也即是做的这部分工作,所以说,当单个神经元的时候,BP神经网络做的工作与SVM类似。该超平面的方程:WXT + b = 0)

  • 向量W为权向量
  • 向量X为输入向量
  • b为偏置(bias),或者称之为阈值(threshold)

 首先解释一下单个神经元如何进行分类判断:

 引入一个阈值逻辑单元(Threshold Logic Unit,TLU)的名词,它可以输入一组加权系数的量,对它们进行求和,如果这个和达到或者超过了某个阈值,输出一个量。

 

让我们用符号标注这些功能,首先,有输入值以及它们的权系数:X 1, X 2, ..., X n和 W 1, W 2, ..., W n。接着是求和计算出的 X i*W i ,产生了激发层 a,换一种方法表示:

a = (X1 * W1)+(X2 * W2)+...+(Xi * Wi)+...+ (Xn * Wn)

阈值称为 theta。最后,输出结果 y。当 a >=theta 时 y=1,反之 y=0。请注意输出可以是连续的,因为它也可以由一个 squash 函数 s(或 sigma)判定,该函数的自变量是 a,函数值在 0 和 1 之间,y=s(a)。

  假设一个 TLU 有两个输入值,它们的权系数等于 1,theta 值等于 1.5。当这个 TLU 输入 <0,0>、<0,1>、<1,0> 和 <1,1> 时,它的输出分别为 0、0、0、1。TLU 将这些输入分为两组:0 组和 1 组。就像懂得逻辑连接(布尔运算 AND)的人脑可以类似地将逻辑连接的句子分类那样,TLU 也懂得一点逻辑连接之类的东西。 

 神经网络的学习是模仿大脑调节神经网络连接的原理。TLU通过改变它的权值以及阈值来进行学习。回想上面,我们看到SUM()>=theta时候,TLU在临界点是输出的是1而不是0,这就相当于当SUM(Wi * Xi)  +  (-1 * theta) >= 0的时候。这时候,我们把-1当做是一个常量输入,而他的权系数theta θ在学习过程(或者说是训练过程)中进行调整。这样,当 SUM(X i* W i)+ (-1 * theta) >= 0 时,y=1,反之 y=0。

在培训过程中,神经网络输入:

  1. 一系列需要分类的术语示例X(input)
  2. 它们的正确分类或者目标Target

这样的输入可以看成一个向量:<X 1, X 2, ..., X n, theta, t>,这里 t 是一个目标或者正确分类。神经网络用这些来调整权系数,其目的使培训中的目标与其分类相匹配。因为神经网络是有指导的培训。或许你现在会问,神经网络是如何通过“调整权系数”来进行学习的?也即神经网络的学习规则。下面介绍一下:权系数的调整有一个学习规则,一个理想化的学习算法如下所示:

理想化的学习算法 fully_trained = FALSE
DO UNTIL (fully_trained):
     fully_trained = TRUE
     FOR EACH training_vector = <X1, X2, ..., Xn, theta, target>::
                                # Weights compared to theta
         a = (X1 * W1)+(X2 * W2)+...+(Xn * Wn) - theta
         y = sigma(a)
         IF y != target:
             fully_trained = FALSE
         FOR EACH Wi:
         MODIFY_WEIGHT(Wi)      # According to the training rule
     IF (fully_trained):
         BREAK

有一条似乎合理的规则是基于这样一种思想,即权系数和阈值的调整应该由分式 (t - y) 确定。这个规则通过引入 alpha (0 < alpha < 1) 完成。我们把 alpha 称为 学习率。W i 中的更改值等于 (alpha * (t - y)* Xi)。当 alpha 趋向于 0 时,神经网络的权系数的调整变得保守一点;当 alpha 趋向于 1 时,权系数的调整变得激进。一个使用这个规则的神经网络称为 感知器,并且这个规则被称为 感知器学习规则。概念一下貌似太多,针对单节点的描述可以暂时到此,对于我们的主题BP网络的学习规则接下来将会描述。

神经元网络:

单层神经元网络:是最基本的神经元网络形式,由有限个神经元构成,所有神经元的输入向量都是同一个向量。由于每一个神经元都会产生一个标量结果,所以单层神经元的输出是一个向量,向量的维数等于神经元的数目。 示意图:

多层神经元网络(BP网络图)

BP (Back Propagation)神经网络,即误差反传误差反向传播算法的学习过程,由信息的正向传播和误差的反向传播两个过程组成。由上图可知,BP神经网络是一个三层的网络:

  • 输入层(input layer)输入层各神经元负责接收来自外界的输入信息,并传递给中间层各神经元;
  • 隐藏层(Hidden Layer):中间层是内部信息处理层,负责信息变换,根据信息变化能力的需求,中间层可以设计为单隐层或者多隐层结构;最后一个隐层传递到输出层各神经元的信息,经进一步处理后,完成一次学习的正向传播处理过程
  • 输出层(Output Layer):顾名思义,输出层向外界输出信息处理结果

  当实际输出与期望输出不符时,进入误差的反向传播阶段。误差通过输出层,按误差梯度下降的方式修正各层权值,向隐层、输入层逐层反传。周而复始的信息正向传播和误差反向传播过程,是各层权值不断调整的过程,也是神经网络学习训练的过程,此过程一直进行到网络输出的误差减少到可以接受的程度,或者预先设定的学习次数为止。

  好了,以上对于神经网络的结构以及各个组件之间的运行时关系描述到此为止,那么,现在重要的是:具体是如何在误差反向传播的过程中,对各个层权系数进行调整?规则是什么?总结上面,调整的目的即是每次训练后减少误差。可以使用最小二乘法或者是梯度下降算法。首先需要介绍一下Delta学习规则

关于 delta 规则

感知器培训规则是基于这样一种思路 ——权系数的调整是由目标和输出的差分方程表达式决定。而 delta 规则是基于梯度降落(也即梯度下降)这样一种思路。在权系数的调整中,神经网络将会找到一种将误差减少到最小的权系数的分配方式。梯度下降参考WIKI。这里不再摘抄。

为了便于说明,将我们的网络限制为没有隐藏节点,但是可能会有不止一个的输出节点。

设p是一组培训中的一个元素,t(p,n)是相应的输出节点 n 的目标。设y(p,n)为经过神经网络处理后的结果,前面提到过的squash函数s决定(还记得我们前面提到说这个函数只是为了将连续的输出对应到我们不连续的分类target么?这个函数本身与神经网络没有关系哈),这里a(p,n)是与p相关的n的激活函数,或者用(p,n) =s(a(p,n))表示为与p相关的节点n的squash过的激活函数。

为网络设定权系数(每个Wi),也为每个p和n建立t(p,n)与 y(p,n)的差分这就意味着为每个p设定了网络全部的误差(因为通过这个P求出来的结果有误差,那么久要更新所有的权系数)。因此对于每组权系数来说有一个平均误差。但是 delta 规则取决于求平均值方法的精确度以及误差。我们先不讨论细节问题,只是说一些与某些p和n相关的误差:1/2* square( t(p,n) - y(p,n) ) ;现在对于每个权系数Wi,平均误差定义如下:

sum = 0
FOR p = 1 TO M:         # M is  number of training vectors
     FOR n = 1 TO N:     # N is  number of output nodes
         sum = sum + (1/2 * (t(p,n)-y(p,n))^2)
average = 1/M * sum

delta 规则就是依据这个误差的定义来定义的。因为误差是依据那些培训向量来说明的,delta 规则是一种获取一个特殊的权系数集以及一个特殊的向量的算法。而改变权系数将会使神经网络的误差最小化。我们不需要讨论支持这个算法的微积分学,只要认为任何Wi发生的变化都是如下所示就够了:

alpha * s'(a(p,n)) * (t(p,n) - y(p,n)) * X(p,i,n)

X(p,i,n)是输入到节点n的p中的第i个元素,alpha是已知的学习率。最后 s'(a(p,n))是与p相关的第n个节点激活的 squashing 函数的变化(派生)率,这就是 delta 规则。

最后说说:梯度下降算法对学习速率alpha的值非常敏感,学习速率的值越大,步长越大收敛的速度就会越快。学习速率越小,步长就小,需要迭代的次数就会多些。当alpha非常小的时候,权系数向量接近某个将误差最小化的向量。用于权系数调节的基于delta规则的算法就是如此。

继续回到BP神经网络的讨论,反向传播这一算法把支持delta规则的分析扩展到了带有隐藏节点的神经网络。为了理解这个问题,设想Bob给Alice讲了一个故事,然后Alice又讲给了TedTed检查了这个事实真相,发现这个故事是错误的。现在 Ted 需要找出哪些错误是Bob造成的而哪些又归咎于Alice。当输出节点从隐藏节点获得输入,网络发现出现了误差,权系数的调整需要一个算法来找出整个误差是由多少不同的节点造成的,网络需要问,“是谁让我误入歧途?到怎样的程度?如何弥补?”这时,网络该怎么做呢?

同样源于梯度降落原理,在权系数调整分析中的唯一不同是涉及到t(p,n)与y(p,n)的差分。通常来说Wi的改变在于:

alpha * s'(a(p,n)) * d(n) * X(p,i,n)

其中d(n)是隐藏节点n的函数,让我们来看:

  1. n 对任何给出的输出节点有多大影响;
  2. 输出节点本身对网络整体的误差有多少影响。

一方面,n 影响一个输出节点越多,n 造成网络整体的误差也越多。另一方面,如果输出节点影响网络整体的误差越少,n 对输出节点的影响也相应减少。这里d(j)是对网络的整体误差的基值,W(n,j) 是 n 对 j 造成的影响,d(j) * W(n,j) 是这两种影响的总和。但是 n 几乎总是影响多个输出节点,也许会影响每一个输出结点,这样,d(n) 可以表示为:

SUM(d(j)*W(n,j))

这里j是一个从n获得输入的输出节点,联系起来,我们就得到了一个培训规则。

第1部分:在隐藏节点n和输出节点j之间权系数改变,如下所示:

alpha * s'(a(p,n))*(t(p,n) - y(p,n)) * X(p,n,j)

第 2 部分:在输入节点i和输出节点n之间权系数改变,如下所示:

alpha * s'(a(p,n)) * sum(d(j) * W(n,j)) * X(p,i,n)

这里每个从n接收输入的输出节点j都不同。关于反向传播算法的基本情况大致如此。

使误差小到适当的程度要遵循的步骤

第 1 步:输入培训向量。

第 2 步:隐藏节点计算它们的输出

第 3 步:输出节点在第 2 步的基础上计算它们的输出。

第 4 步:计算第 3 步所得的结果和期望值之间的差。

第 5 步:把第 4 步的结果填入培训规则的第 1 部分。

第 6 步:对于每个隐藏节点 n,计算 d(n)。

第 7 步:把第 6 步的结果填入培训规则的第 2 部分。

通常把第 1 步到第 3 步称为 正向传播,把第 4 步到第 7 步称为 反向传播。反向传播的名字由此而来。

参考资料:

http://www.cnblogs.com/heaad/archive/2011/03/07/1976443.html神经网络编程入门,这儿有一个BP的matlab程序示例。

http://zh.wikipedia.org/wiki/%E6%9C%80%E9%80%9F%E4%B8%8B%E9%99%8D%E6%B3%95 梯度下降法

http://www.ibm.com/developerworks/cn/linux/other/l-neural/index.html 神经网络介绍

http://en.wikipedia.org/wiki/Backpropagation wiki上面的BP介绍

  • 10
    点赞
  • 59
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值