关闭
当前搜索:

[置顶] 个人简介About me

嘿嘿嘿,大家好,我是Zory 本人初三学生党一枚,于五年级走上OI的不归路,嗯嗯 其实我的网站有点多,怕你迷路给张地图: 国内个人主页:zory.coding.me Delphi专博:zory.cnblogs.com C++专博:blog.csdn.net/zory_programmer 软件发布网站:zory.icoc.cc...
阅读(176) 评论(0)

【OI之路】11更高级数论-3快速傅里叶变换

简介快速傅里叶变换(Fast Fourier Transform),简称FFT OI中主要要来加速多项式乘法声明预备知识:实数,虚数 定义n=第一个多项式最高次+1,m=第二个多项式最高次+1 以(4x3+5)×(x2−6x+3√)(4x^3+5)\times (x^2-6x+\sqrt3)为例n=4,m=3转化对于x的多项式可以转化为对于x的函数f(x) 函数f(x)有两种表达方式:系数表...
阅读(119) 评论(0)

markdown的数学公式

f(x,y)=x2+y2,xϵ[0,100]f(x,y) = x^2 + y^2, x\epsilon[0,100] ⨂12⨂34\sideset{^1_2}{^3_4}\bigotimes xyz=(1+ex)−2xywx^{y^z}=(1+e^x)^{-2xy^w} (xy)8(\frac{x}{y})^8,(xy)8\left(\frac{x}{y}\right)^8 dudx∣∣x=...
阅读(102) 评论(0)

【OI之路】11更高级数论-2莫比乌斯反演

较优质而乱七八糟的文章: http://blog.csdn.net/acdreamers/article/details/8542292 http://blog.csdn.net/herodeathes/article/details/78602577 http://blog.csdn.net/lixuepeng_001/article/details/50577932莫比乌斯反演,需要使用到...
阅读(185) 评论(0)

NOIP2017训练日记

尽管走不了最短路,图仍是连通图2017.10.22-2017.11.102017.10.22及以前统测二前申请停课了一个星期,然后目测统测二太浪了,但值得,嘻嘻 不过忘记写日记了,大概是 归并排序、逆序对、分块、最小割转最短路2017.10.23 Monday搞定了caioj主席树的第二、四题 其中第二题带修改,我想到了第二种做法,各有所长吧 第四题 分块加速+树状数组预处理+主席树维护区间信...
阅读(155) 评论(0)

NOIP2017游记

2017.11.10 Friday下午在车上浪晚上到酒店后去万达广场 晚饭在毛家饭店吃,有的人吃不了辣,点得有点多了 接着初三小队逛一逛,买瓶饮料,等我妈送电脑来 酒店一个房一个wifi,还算流畅 晚上开会也就说说保管好准考证、身份证什么的 复习一下同余方程组,caioj和poj一遍AC 做了一道单调队列,scy说他押这两个 其实还有很虚,晚上十一点睡觉2017.11.11 Satur...
阅读(960) 评论(4)

【OI之路】07动态规划

建议前往我的网站获得最佳体验。7.1 采药的升级版终极装备7.2 中链式(二维)乘积最大7.3 最长升降序子序列合唱队形7.4 字符串最长公共子序列7.5 练习动态规划思想+二分优化:进攻策略 难度较大 思维风暴~:乘电梯...
阅读(131) 评论(0)

【OI之路】06树-3Qtree

建议前往我的网站获得最佳体验。[SPOJ]Qtree1~4题理解理解Qtree=Query on a tree分开来Qtree1 Qtree2 Qtree3 Qtree4...
阅读(88) 评论(0)

【OI之路】06树-1线段树

建议前往我的网站获得最佳体验。6.1.1 简单的裸题忽略~6.1.2 加上Lazy优化这里6.1.3 离散化这里6.1.4 查询后要删除这里...
阅读(79) 评论(0)

【OI之路】05计算机内部知识-4数据类型的对照

建议前往我的网站获得最佳体验。...
阅读(73) 评论(0)

【OI之路】05计算机内部知识-3可变参数

建议前往我的网站获得最佳体验。声明这篇文章原先来自于网络,现由我转载并稍微做了修改,原文暂时找不到,如果有人知道麻烦留言。引言可变参数即表示参数个数可以变化,是实现printf(),sprintf()等函数的关键之处。在C#中有专门的关键字parame,但在C,C++并没有类似的语法,不过幸好提供这方面的处理函数,本文将重点介绍如何使用这些函数。可变参数表示用三个点…来表示,来看printf()函数...
阅读(98) 评论(0)

【OI之路】05计算机内部知识-2操作符和优先级

建议前往我的网站获得最佳体验。表格记忆方法:–摘自《C语言程序设计实用问答》问题:如何记住运算符的15种优先级和结合性? 解答:C语言中运算符种类比较繁多,优先级有15种,结合性有两种。 如何记忆两种结合性和15种优先级?下面讲述一种记忆方法。 结合性有两种,一种是自左至右,另一种是自右至左,大部分运算符的结合性是自左至右,只有单目运算符、三目运算符的赋值运算符的结合性自右至左。优先级有15种...
阅读(102) 评论(0)

【OI之路】05理论知识-2原码反码补码

建议前往我的网站获得最佳体验。5.1.1 基本概念字节:8各位。 字长:若干个字节。到底是几个字节?具体看是哪种CPU。 比如2010普及组第11题就假设一个字长只有一个字节8个位。 接下来原码、反码,补码都是建立在机器数在一个字长上的表示。 为了方便理解,我们假设字长为一个字节。 读者要注意事实上为32位CPU字长为4个字节,64位CPU字长为8个字节。5.1.2 原码首位为符号位,其余...
阅读(166) 评论(0)

【OI之路】04排序搜索-3计数排序

建议前往我的网站获得最佳体验。4.4 计数排序1)操作假设将要被排序的数组是A,排序后存储到B数组,C为临时数组。所谓计数,是指通过C[i]数组计算大小=i的元素个数(这就是为什么它需要一个元素最大值m)。在此基础上,r的定义改为计算“元素≤i”的元素个数,从前往后递推。 下一步,逆序循环,从n(数组元素个数)到1,将A[i]放到B中第C[A[i]]个位置上,并减小C[A[i]]。2)原理1.C[...
阅读(83) 评论(0)

【OI之路】04排序搜索-2系统快排

建议前往我的网站获得最佳体验。4.3 快速排序#include int QSortCmp(const void *x,const void *y) { int a=*(int *)x; int b=*(int *)y; if(a>b) return 1; if(a<b) return -1; } qsort(a,长度(从0开始),sizeof(int...
阅读(106) 评论(0)

【OI之路】02数论算法-6离散化

建议前往我的网站获得最佳体验。理论上就是让数字间相对关系保持不变但数字变小,以缩小占用空间(开数组时)。struct nod { int x,p,z;//x原值,p原位置,z新值 }a[99],b[99]; int main() { int n;cin>>n; for(int i=1;i<=n;i++) { scanf("%d",&a[i].x);...
阅读(77) 评论(0)

【OI之路】04排序搜索-1二分

建议前往我的网站获得最佳体验。4.1 二分排序void sort2(int l,int r) { int x=l,y=r,mid=a[(l+r)/2]; while(x<=y)//有= { while(a[x]mid) y--; if(x>y) break; int t...
阅读(78) 评论(0)

【OI之路】03图论算法-3并查集

建议前往我的网站获得最佳体验。3.3.1定义并查集,顾名思义就是有“合并集合”和“查找集合”两种操作的关于数据结构的一种算法。用途 1、维护无向图的连通性。支持判断两个点是否在同一连通块内,和判断增加一条边是否会产生环。 2、用在求解最小生成树的Kruskal算法里。初始化 自己是自己的老大3.3.2 代码找老大: int findfa(int x)0 { if(fa[x]==x) r...
阅读(96) 评论(0)

【OI之路】03图论算法-2最短路之全源最短路(Floyd)

建议前往我的网站获得最佳体验。3.2.1定义这个算法用于求所有点对的最短距离。比调用n次SPFA的优点在于代码简单,时间复杂度为O(n^3)。【无法计算含有负环的图】依次扫描每一点(k),并以该点作为中介点,计算出通过k点的其他任意两点(i,j)的最短距离,这就是floyd算法的精髓!同时也解释了为什么k点这个中介点要放在最外层循环。其实就是运用动态规划的思想。3.2.2 代码void floyd(...
阅读(131) 评论(0)

【OI之路】03图论算法-1最短路之单源最短路(SPFA)

建议前往我的网站获得最佳体验。3.1.1定义**松弛:常听人说松弛,一直不懂,后来明白其实就是更新某点到源点最短距离。 邻接表:表示与一个点联通的所有路。 负权回路:从一个点沿着某条路径出发,又回到了自己,而且所经过的边上的权和小于,该回路将导致算法不停循环以更小。**回归正题,SPFA是bellman-ford的一种改进算法,由1994年西安交通大学段凡丁提出。它无法处理带有负环的图(其实应该...
阅读(164) 评论(0)

【OI之路】02数论算法-5快速乘及快速幂

建议前往我的网站获得最佳体验。2.5.1代码lld Mod=10000003; lld qmul(lld x,lld y) { lld ans=0; while(y) { while(bool(y&1)==0) x=(x+x)%Mod,y>>1; ans=(ans+x)%Mod;y--; } return ans%Mod; }...
阅读(122) 评论(0)
30条 共2页1 2 下一页 尾页
    个人资料
    • 访问:7525次
    • 积分:340
    • 等级:
    • 排名:千里之外
    • 原创:30篇
    • 转载:0篇
    • 译文:0篇
    • 评论:4条
    博客专栏
    最新评论