关闭

POJ 3352 Road Construction

标签: c++poj
227人阅读 评论(0) 收藏 举报
分类:
Road Construction
Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 10183   Accepted: 5057

Description

It's almost summer time, and that means that it's almost summer construction time! This year, the good people who are in charge of the roads on the tropical island paradise of Remote Island would like to repair and upgrade the various roads that lead between the various tourist attractions on the island.

The roads themselves are also rather interesting. Due to the strange customs of the island, the roads are arranged so that they never meet at intersections, but rather pass over or under each other using bridges and tunnels. In this way, each road runs between two specific tourist attractions, so that the tourists do not become irreparably lost.

Unfortunately, given the nature of the repairs and upgrades needed on each road, when the construction company works on a particular road, it is unusable in either direction. This could cause a problem if it becomes impossible to travel between two tourist attractions, even if the construction company works on only one road at any particular time.

So, the Road Department of Remote Island has decided to call upon your consulting services to help remedy this problem. It has been decided that new roads will have to be built between the various attractions in such a way that in the final configuration, if any one road is undergoing construction, it would still be possible to travel between any two tourist attractions using the remaining roads. Your task is to find the minimum number of new roads necessary.

Input

The first line of input will consist of positive integers n and r, separated by a space, where 3 ≤ n ≤ 1000 is the number of tourist attractions on the island, and 2 ≤ r ≤ 1000 is the number of roads. The tourist attractions are conveniently labelled from 1 to n. Each of the following r lines will consist of two integers, v and w, separated by a space, indicating that a road exists between the attractions labelled v and w. Note that you may travel in either direction down each road, and any pair of tourist attractions will have at most one road directly between them. Also, you are assured that in the current configuration, it is possible to travel between any two tourist attractions.

Output

One line, consisting of an integer, which gives the minimum number of roads that we need to add.

Sample Input

Sample Input 1
10 12
1 2
1 3
1 4
2 5
2 6
5 6
3 7
3 8
7 8
4 9
4 10
9 10

Sample Input 2
3 3
1 2
2 3
1 3

Sample Output

Output for Sample Input 1
2

Output for Sample Input 2
0

Source

CCC 2007

要修路,问至少要多修几条路才能保证,当以条路被占用的时候,任意两点还能互达。即求加边构造强连通的图。

ACcode:

#pragma warning(disable:4786)//使命名长度不受限制
#pragma comment(linker, "/STACK:102400000,102400000")//手工开栈
#include <map>
#include <set>
#include <queue>
#include <cmath>
#include <stack>
#include <cctype>
#include <cstdio>
#include <cstring>
#include <stdlib.h>
#include <iostream>
#include <algorithm>
#define rd(x) scanf("%d",&x)
#define rd2(x,y) scanf("%d%d",&x,&y)
#define rds(x) scanf("%s",x)
#define rdc(x) scanf("%c",&x)
#define ll long long int
#define maxn 100005
#define mod 1000000007
#define INF 0x3f3f3f3f //int 最大值
#define FOR(i,f_start,f_end) for(int i=f_start;i<=f_end;++i)
#define MT(x,i) memset(x,i,sizeof(x))
#define PI  acos(-1.0)
#define E  exp(1)
using namespace std;
struct Edge{
    int to,next;
    bool cut;
}e[maxn];
int head[maxn],cnt;
int low[maxn],dfn[maxn],Stack[maxn],belong[maxn],du[maxn];
int pos,top,block,bridge;
bool instack[maxn];
void addEdge(int u,int v){
    e[cnt].to=v;e[cnt].next=head[u];
    e[cnt].cut=false;head[u]=cnt++;
}
void tarjan(int u,int pre){
    int v;
    low[u]=dfn[u]=++pos;
    Stack[top++]=u;
    instack[u]=true;
    for(int i=head[u];i!=-1;i=e[i].next){
        v=e[i].to;
        if(v==pre)continue;
        if(!dfn[v]){
            tarjan(v,u);
            if(low[u]>low[v])low[u]=low[v];
            if(low[v]>dfn[u]){
                bridge++;
                e[i].cut=true;
                e[i^1].cut=true;
            }
        }
        else if(instack[v]&&low[u]>dfn[v])
            low[u]=dfn[v];
    }
    if(low[u]==dfn[u]){
        block++;
        do{
            v=Stack[--top];
            instack[v]=false;
            belong[v]=block;
        }
        while(v!=u);
    }
}
void init(){
    cnt=pos=top=block=bridge=0;
    MT(head,-1); MT(dfn,0);
    MT(instack,false);MT(du,0);
}
void solve(int n){
    tarjan(1,0);
    int ans=0;
    FOR(i,1,n){
        for(int k=head[i];k!=-1;k=e[k].next)
                if(e[k].cut)
                    du[belong[i]]++;
    }
    FOR(i,1,block)
        if(du[i]==1)
            ans++;
    printf("%d\n",(ans+1)/2);
}
int main(){
    int n,m,u,v;
    while(rd2(n,m)!=EOF){
        init();
        FOR(i,1,m){
            rd2(u,v);
            addEdge(u,v);
            addEdge(v,u);
        }
        solve(n);
    }
    return 0;
}
/*
10 12
1 2
1 3
1 4
2 5
2 6
5 6
3 7
3 8
7 8
4 9
4 10
9 10
3 3
1 2
2 3
1 3
*/


0
0
查看评论
发表评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场

POJ 3352 Road Construction 使得无向图边变双连通图

点击打开链接 Road Construction Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 8168   Accepted: 4106 ...
  • Dinivity123
  • Dinivity123
  • 2014-04-29 17:42
  • 1064

【POJ 3352】 Road Construction(边联通分量入门)

【POJ 3352】 Road Construction(边联通分量入门) Road Construction Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 10418   Accept...
  • ChallengerRumble
  • ChallengerRumble
  • 2016-02-20 21:22
  • 569

Road Construction POJ - 3352 (边双连通分量)题解

Road Construction POJ - 3352 (边双连通分量)题解
  • hsj970319
  • hsj970319
  • 2017-03-03 23:20
  • 70

poj 3352 Road Construction(双连通图Tarjan求至少增加的边数)

大致题意: 某个企业想把一个热带天堂岛变成旅游胜地,岛上有N个旅游景点,任意2个旅游景点之间有路径连通(注意不一定是直接连通)。而为了给游客提供更方便的服务,该企业要求道路部门在某些道路增加一些设施。 道路部门每次只会选择一条道路施工,在该条道路施工完毕前,其他道路依然可以通行。然而有道路部门正...
  • u014552756
  • u014552756
  • 2015-11-16 09:16
  • 224

POJ - 3352 Road Construction (双连通分量中的 边连通分量,加缩点)

It's almost summer time, and that means that it's almost summer construction time! This year, the good people who are in charge of the roads o...
  • obsorb_knowledge
  • obsorb_knowledge
  • 2017-11-04 17:49
  • 39

POJ 3352 Road Construction(添最少边构造边双连通图的结论)

题意:已知无向图,问添加最少的边使之成为边双连通图 思路:显然先缩点成一棵树,添加最少边使一棵树的边双连通 此处有结论:对于一棵树添加(1+leaf)>>1 条无向边就能构造成一个双连通图,构造方法显然(脑补一下 //216K 63MS C++ 1754B #in...
  • kalilili
  • kalilili
  • 2015-04-23 22:12
  • 550

poj 3352 Road Construction 【边双连通分量缩点 + 加边定理】

传送门 //缩点成树后, 判入度为1的点有多少个, 则满足题意要加的边数就是(in[1]+1)/2 条边, 画个图就知道了. 注意处理细节就是了 AC Code/** @Cain*/ #define Fill(x,y) memset(x,y,sizeof(x)) const int maxn=1...
  • Anxdada
  • Anxdada
  • 2017-07-21 00:52
  • 139

Tarjan算法求解桥和边双连通分量(附POJ 3352 Road Construction解题报告)

在说Tarjan算法解决桥和边双连通分量问题之前我们先来回顾一下Tarjan算法是如何求解强连通分量的。 Tarjan算法在求解强连通分量的时候,通过引入dfs过程中对一个点访问的顺序dfsNum(也就是在访问该点之前已经访问的点的个数)和一个点可以到达的最小的dfsNum的low数...
  • u011483306
  • u011483306
  • 2014-07-10 17:28
  • 489

Tarjan算法求解桥和边双连通分量(附POJ 3352 Road Construction解题报告

Tarjan算法求解桥和边双连通分量(附POJ 3352 Road Construction解题报告) 分类: 算法整理2011-07-21 11:03 1597人阅读 评论(1) 收藏 举报 construction算法 ...
  • pi9nc
  • pi9nc
  • 2013-06-26 21:56
  • 683

Road Hackers:自动驾驶平台

数据 原理 开放平台数据10000公里数据,涉及很多数据,自定位、决策、路况分析、POI 和高精地图。一是全景图片数据,二是汽车姿态数据。 关于图片数据,地图采集车采集到的是360度全景数据,但考虑到数据量太大,本次数据集中的数据是截取正前方320*320分辨率的图片,且图片下方与车头相切。 关于汽...
  • c602273091
  • c602273091
  • 2017-01-11 16:27
  • 1091
    个人资料
    • 访问:377479次
    • 积分:11816
    • 等级:
    • 排名:第1478名
    • 原创:805篇
    • 转载:2篇
    • 译文:0篇
    • 评论:111条
    最新评论