关闭

机器学习经典图

663人阅读 评论(0) 收藏 举报
分类:

一下是电脑中存储的机器学习经典图,简单明了地解释了一些基本问题。图片收集自网络,仅供学习和交流。

1. 为什么低训练误差并不总是一件好的事情呢?


答:因为模型的复杂性

2. 低度拟合或者过度拟合的例子


3. 为什么贝叶斯推理可以具体化奥卡姆剃刀原理


答:首先知道奥卡姆剃刀原理:切勿浪费较多东西去做,用较少的东西,同样可以做好的事情。上图已经非常直接:较少的前提条件或许能得到更广泛的结果。

4. 为什么集体相关的特征单独来看时无关紧要?


答:如上图,数据是二维的,映射到单个维度来看就是泛泛的、无意义的。

5. 为什么无关紧要的特征会损害KNN?


答:如上图,横轴为无关紧要特征,因为横轴特征的出现,将原本鲜明的聚类特征模糊化,纵轴权重被横轴稀释,从而得到错误的聚类结果。

6. 非线性的基础函数是如何使一个低维度的非线性边界的分类问题,转变为一个高维度的线性边界问题的?


答:此条与第4点相对应,与第5点相反。即低维线性不可分的数据,投射到高维也许线性可分。核函数也是这个原理。

7. 为什么判别式学习比产生式更加简单?


答:首先知道,

判别式模型(Discriminative Model)是直接对条件概率p(y|x;θ)建模。常见的判别式模型有 线性回归模型、线性判别分析、支持向量机SVM、神经网络等。

生成式模型(Generative Model)则会对x和y的联合分布p(x,y)建模,然后通过贝叶斯公式来求得p(yi|x),然后选取使得p(yi|x)最大的yi。

已知特征x的情况下,

左图为生成式:需要根据已知训练集的分类,统计该分类下特征出现概率,求出全概率,然后求出某个特征属于某一分类的概率,概率最大的分类即为最终分类。左图描绘了求解联合概率的第一步,图形复杂。

右图为判别式:直接对条件概率p(Ci|x)建模,即某一特征属于某一分类的概率,图形简单明了。

8. 学习算法可以被视作优化不同的损失函数?


9. 带有两个预测的最小二乘回归的N维几何图形。


10. 链式求导。


11. 特征工程大图(右键下载)


0
0
查看评论

机器学习经典论文

源地址: http://suanfazu.com/discussion/68/机器学习经典论文survey合集#0-tsina-1-13801-397232819ff9a47a7b7e80a40613cfe1 感谢分享 Active Learning Two Face...
  • zhouyongsdzh
  • zhouyongsdzh
  • 2013-11-23 23:22
  • 1740

机器学习经典书目汇总

from: http://wenku.baidu.com/view/3873d18fba1aa8114531d92f   本文总结了机器学习的经典书籍,包括数学基础和算法理论的书籍。   入门书单   《数学之美》   作者吴军大家都...
  • ccwwff
  • ccwwff
  • 2016-02-17 09:06
  • 1382

机器学习的精确率P,召回率R和F-score

数据集中 : 正例 反例 我们的预测 正例 : A B 我们的预测 反例 : C D 精确率P:就是A/(A+B),通俗化意思是“我们的预测有多少是对的”; 召回率R:就是A/(A+C) 通俗化意思是“正例里我们的预测覆盖了多少”...
  • qq_27437967
  • qq_27437967
  • 2017-05-12 11:30
  • 389

机器学习入门好文,强烈推荐

转自 飞鸟各投林 史上最强----机器学习经典总结---入门必读----心血总结-----回味无穷 让我们从机器学习谈起 导读:在本篇文章中,将对机器学习做个概要的介绍。本文的目的是能让即便完全不了解机器学习的人也能了解机器学习,并且上手相关的实践。当然,本文也面对一般读者,...
  • ritterliu
  • ritterliu
  • 2017-02-01 23:44
  • 62844

盘点机器学习领域的五大流派

盛顿大学教授Pedro Domingos在本周结束的ACM Webminar上介绍了他认为的机器学习五大流派。他认为,机器学习中符号主义者的代表人物是Mitchell、 Muggleton、Quilan,联结主义者代表是LeCun、Hinton和Bengio,进化主义代表是Koda、Holland以...
  • GoodShot
  • GoodShot
  • 2016-01-13 12:13
  • 1030

机器学习经典论文/survey合集

转自http://suanfazu.com/discussion/68/%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0%E7%BB%8F%E5%85%B8%E8%AE%BA%E6%96%87survey%E5%90%88%E9%9B%86#0-tsina-1-13801-3...
  • wangzhebupt
  • wangzhebupt
  • 2013-11-24 13:33
  • 1405

机器学习入门心得——书籍、课程推荐

MOOCsCoursera 上 Andrew Ng 的 Machine Learning 课程:适合 Machine Learning 的入门,我当时是研一的上学期听的这个课,学校的课还比较多,那时是完全按照他的课程日历来学的,每周都有Deadline,一共学习了3个月,就是通过这个课对机器学习有了...
  • Shingle_
  • Shingle_
  • 2016-07-16 16:00
  • 9615

【第2期免费送书】 10本机器学习与Python相关书籍等你来领!经典之作,绝对领你心动......

微信公众号关键字全网搜索最新排名【机器学习算法】:排名第一【机器学习】:排名第一【Python】:排名第三【算法】:排名第四AI系列公开课,限时免费【强烈推荐】 AI 系列免费公开课......点击上面链接领取11.11举办了第1期免费送书活动,非常感谢大家的踊跃参与,活动之后为获奖的小伙伴邮寄了他...
  • Mbx8X9u
  • Mbx8X9u
  • 2017-12-12 00:00
  • 605

图模型与机器学习

对于需要迭代计算的算法,MapReduce显然不可用,迭代n次的IO量太大,而基于消息的传递模型,BSP和MPI的优势就出来了。BSP的编程模型,试验过了,确实容易入门,只要将求解问题(例如,优化问题、图的最短路径问题等等)抽象成图模型(顶点Vertex、边Edge)后,再通过消息Message,来...
  • a936676463
  • a936676463
  • 2015-12-07 14:54
  • 869

推荐这六本关于机器学习的书籍,并说说它们的优缺点

万事开头难。第一本该介绍哪个,或者第一本该看哪个,实在是不好讲。即使是Amazon上的书评,老外也是理工科两极分化严重,每本都有很多人说适合入门用的,也有很多人说不适合的。但是个人认为,第一本一定要能用最清晰的语言,最简单的例子把尽量多的核心概念、术语讲在前面,最好还要有尽可能多的图,这样初学者才能...
  • memray
  • memray
  • 2015-09-08 03:24
  • 33013
    个人资料
    • 访问:680974次
    • 积分:8955
    • 等级:
    • 排名:第2542名
    • 原创:284篇
    • 转载:96篇
    • 译文:19篇
    • 评论:135条
    博客专栏