关闭

28、整数的二进制表示中1的个数

标签: input算法面试编程微软
915人阅读 评论(0) 收藏 举报
分类:

题目:

输入一个整数,求该整数的二进制表达中有多少个1。

例如输入10,由于其二进制表示为1010,有两个1,因此输出2。

分析:
这是一道很基本的考查位运算的面试题。

包括微软在内的很多公司都曾采用过这道题。


方法一:

如果一个整数不为0,那么这个整数至少有一位是1。如果我们把这个整数减去1,那么原来处在整数最右边的1就会变成0,原来在1后面的所有的0都会变成1。其余的所有位将不受到影响。举个例子:一个二进制数1100,从右边数起的第三位是处于最右边的一个1。减去1后,第三位变成0,它后面的两位0变成1,而前面的1保持不变,因此得到结果是1011

我们发现减1的结果是把从最右边一个1开始的所有位都取反了。这个时候如果我们再把原来的整数和减去1之后的结果做与运算,从原来整数最右边一个1那一位开始所有位都会变成0。如1100&1011=1000。也就是说,把一个整数减去1,再和原整数做与运算,会把该整数最右边一个1变成0。那么一个整数的二进制有多少个1,就可以进行多少次这样的操作。

给出代码:

#include <stdio.h>

void CalNum(int n)
{
	int count=0;
	while (n!=0)
	{
		n &=n-1;
		count++;
	}

	printf("The result is :  %d  \n\n",count);
}

int main()
{
	int n;
	while (printf("Input a number: "),scanf("%d",&n)!=EOF)
	{
		CalNum(n);
	}

	return 0;
}


方法二:

我们先判断整数的最右边一位是不是1。接着把整数右移一位,原来处于右边第二位的数字现在被移到第一位了,再判断是不是1。这样每次移动一位,直到这个整数变成0为止。现在的问题变成怎样判断一个整数的最右边一位是不是1了。很简单,如果它和整数1作与运算。由于1除了最右边一位以外,其他所有位都为0。因此如果与运算的结果为1,表示整数的最右边一位是1,否则是0


给出代码:

#include <stdio.h>

void CalNum(int n)
{
	int count=0;
	while (n)
	{
		if (n&1!=0)
		{
			count++;
		}
		n>>=1;
	}

	printf("The result is :  %d  \n\n",count);
}

int main()
{
	int n;
	while (printf("Input a number: "),scanf("%d",&n)!=EOF)  //n必须为正数
	{
		CalNum(n);
	}

	return 0;
}

可能有人会问,整数右移一位在数学上是和除以2是等价的。那可不可以把上面的代码中的右移运算符换成除以2呢?答案是最好不要换成除法。因为除法的效率比移位运算要低的多,在实际编程中如果可以应尽可能地用移位运算符代替乘除法。 

这个思路当输入i是正数时没有问题,但当输入的i是一个负数时,不但不能得到正确的1的个数,还将导致死循环。以负数0x80000000为例,右移一位的时候,并不是简单地把最高位的1移到第二位变成0x40000000,而是0xC0000000。这是因为移位前是个负数,仍然要保证移位后是个负数,因此移位后的最高位会设为1。如果一直做右移运算,最终这个数字就会变成0xFFFFFFFF而陷入死循环。

为了避免死循环,我们可以不右移输入的数字i。首先i1做与运算,判断i的最低位是不是为1。接着把1左移一位得到2,再和i做与运算,就能判断i的次高位是不是1……这样反复左移,每次都能判断i的其中一位是不是1

基于此,我们得到如下代码:

#include <stdio.h>

void CalNum(int n)
{
	int count=0,flag=1;;
	while (flag)
	{
		if (flag&n)
		{
			count++;
		}
		flag<<=1;
	}

	printf("The result is :  %d  \n\n",count);
}

int main()
{
	int n;
	while (printf("Input a number: "),scanf("%d",&n)!=EOF)
	{
		CalNum(n);
	}

	return 0;
}

网上看到还有两种算法,我看不懂,就当是收藏吧。

算法三:

int count_ones(unsigned a)
{
    a = (a & 0x55555555) + ((a >> 1) & 0x55555555);
    a = (a & 0x33333333) + ((a >> 2) & 0x33333333);
    a = (a & 0x0f0f0f0f) + ((a >> 4) & 0x0f0f0f0f);
    a = (a & 0x00ff00ff) + ((a >> 8) & 0x00ff00ff);
    a = (a & 0x0000ffff) + ((a >> 16) & 0x0000ffff);

    return a;
}


算法四:

const int ones[] = {0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, 1, 2, 2,\
 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4,\
 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 1, 2, 2, 3, 2,\
 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5,\
 5, 6, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5,\
 6, 4, 5, 5, 6, 5, 6, 6, 7, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,\
 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 2, 3, 3, 4, 3, 4, 4, 5, 3,\
 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 2, 3,\
 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5,\
 6, 5, 6, 6, 7, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 4, 5, 5, 6,\
 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8};

int count_ones(unsigned a)
{
    return (ones[a & 0xff] + ones[(a >> 8) & 0xff] + ones[(a >> 16) & 0xff]\
        + ones[(a >> 24) & 0xff]);
}




0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:222672次
    • 积分:3329
    • 等级:
    • 排名:第10526名
    • 原创:114篇
    • 转载:37篇
    • 译文:0篇
    • 评论:24条
    最新评论