关闭

第十二周 项目1 -图基本算法库

标签: 数据结构
626人阅读 评论(0) 收藏 举报
问题描述及代码:
/*  
* Copyright (c)2015,烟台大学计算机与控制工程学院  
* All rights reserved.  
* 文件名称:12周项目1.cpp  
* 作    者:张雯婧
* 完成日期:2016年11月12日  
* 版 本 号:v1.0    
* 问题描述:  定义图的邻接矩阵和邻接表存储结构,实现其基本运算,并完成测试。   
要求:  
1、头文件graph.h中定义相关的数据结构并声明用于完成基本运算的函数。对应基本运算的函数包括:  
    void ArrayToMat(int *Arr, int n, MGraph &g); //用普通数组构造图的邻接矩阵 
    void ArrayToList(int *Arr, int n, ALGraph *&); //用普通数组构造图的邻接表 
    void MatToList(MGraph g,ALGraph *&G);//将邻接矩阵g转换成邻接表G 
    void ListToMat(ALGraph *G,MGraph &g);//将邻接表G转换成邻接矩阵g 
    void DispMat(MGraph g);//输出邻接矩阵g 
    void DispAdj(ALGraph *G);//输出邻接表G     
2、在graph.cpp中实现这些函数 
3、用main.cpp中的main函数中完成测试。    
* 输入描述: 无  
* 程序输出: 测试数据  
*/
graph.h的代码
#ifndef GRAPH_H_INCLUDED  
#define GRAPH_H_INCLUDED  
#include <stdio.h>  
#include <malloc.h>  
#define MAXV 100                //最大顶点个数  
#define INF 32767       //INF表示∞  
typedef int InfoType;  

//以下定义邻接矩阵类型  
typedef struct  
{  
    int no;                     //顶点编号  
    InfoType info;              //顶点其他信息,在此存放带权图权值  
} VertexType;                   //顶点类型  
typedef struct                  //图的定义  
{  
    int edges[MAXV][MAXV];      //邻接矩阵  
    int n,e;                    //顶点数,弧数  
    VertexType vexs[MAXV];      //存放顶点信息  
} MGraph;                       //图的邻接矩阵类型  
//以下定义邻接表类型  
typedef struct ANode            //弧的结点结构类型  
{  
    int adjvex;                 //该弧的终点位置  
    struct ANode *nextarc;      //指向下一条弧的指针  
    InfoType info;              //该弧的相关信息,这里用于存放权值  
} ArcNode;  
typedef int Vertex;  
typedef struct Vnode            //邻接表头结点的类型  
{  
    Vertex data;                //顶点信息  
    int count;                  //存放顶点入度,只在拓扑排序中用  
    ArcNode *firstarc;          //指向第一条弧  
} VNode;  
typedef VNode AdjList[MAXV];    //AdjList是邻接表类型  
typedef struct  
{  
    AdjList adjlist;            //邻接表  
    int n,e;                    //图中顶点数n和边数e  
} ALGraph;                      //图的邻接表类型  
//功能:由一个反映图中顶点邻接关系的二维数组,构造出用邻接矩阵存储的图  
//参数:Arr - 数组名,由于形式参数为二维数组时必须给出每行的元素个数,在此将参数Arr声明为一维数组名(指向int的指针)  
//      n - 矩阵的阶数  
//      g - 要构造出来的邻接矩阵数据结构  
void ArrayToMat(int *Arr, int n, MGraph &g); //用普通数组构造图的邻接矩阵  
void ArrayToList(int *Arr, int n, ALGraph *&); //用普通数组构造图的邻接表  
void MatToList(MGraph g,ALGraph *&G);//将邻接矩阵g转换成邻接表G  
void ListToMat(ALGraph *G,MGraph &g);//将邻接表G转换成邻接矩阵g  
void DispMat(MGraph g);//输出邻接矩阵g  
void DispAdj(ALGraph *G);//输出邻接表G  
#endif // GRAPH_H_INCLUDED
图基本运算函数  
#include "graph.h"  
//功能:由一个反映图中顶点邻接关系的二维数组,构造出用邻接矩阵存储的图  
//参数:Arr - 数组名,由于形式参数为二维数组时必须给出每行的元素个数,在此将参数Arr声明为一维数组名(指向int的指针)  
//      n - 矩阵的阶数  
//      g - 要构造出来的邻接矩阵数据结构  
void ArrayToMat(int *Arr, int n, MGraph &g)  
{  
    int i,j,count=0;  //count用于统计边数,即矩阵中非0元素个数  
    g.n=n;  
    for (i=0; i<g.n; i++)  
        for (j=0; j<g.n; j++)  
        {  
            g.edges[i][j]=Arr[i*n+j]; //将Arr看作n×n的二维数组,Arr[i*n+j]即是Arr[i][j],计算存储位置的功夫在此应用  
            if(g.edges[i][j]!=0)  
                count++;  
        }  
    g.e=count;  
}  

void ArrayToList(int *Arr, int n, ALGraph *&G)  
{  
    int i,j,count=0;  //count用于统计边数,即矩阵中非0元素个数  
    ArcNode *p;  
    G=(ALGraph *)malloc(sizeof(ALGraph));  
    G->n=n;  
    for (i=0; i<n; i++)                 //给邻接表中所有头节点的指针域置初值  
        G->adjlist[i].firstarc=NULL;  
    for (i=0; i<n; i++)                 //检查邻接矩阵中每个元素  
        for (j=n-1; j>=0; j--)  
            if (Arr[i*n+j]!=0)      //存在一条边,将Arr看作n×n的二维数组,Arr[i*n+j]即是Arr[i][j]  
            {  
                p=(ArcNode *)malloc(sizeof(ArcNode));   //创建一个节点*p  
                p->adjvex=j;  
                p->info=Arr[i*n+j];  
                p->nextarc=G->adjlist[i].firstarc;      //采用头插法插入*p  
                G->adjlist[i].firstarc=p;  
            }  
    G->e=count;  
}  

void MatToList(MGraph g, ALGraph *&G)  
//将邻接矩阵g转换成邻接表G  
{  
    int i,j;  
    ArcNode *p;  
    G=(ALGraph *)malloc(sizeof(ALGraph));  
    for (i=0; i<g.n; i++)                   //给邻接表中所有头节点的指针域置初值  
        G->adjlist[i].firstarc=NULL;  
    for (i=0; i<g.n; i++)                   //检查邻接矩阵中每个元素  
        for (j=g.n-1; j>=0; j--)  
            if (g.edges[i][j]!=0)       //存在一条边  
            {  
                p=(ArcNode *)malloc(sizeof(ArcNode));   //创建一个节点*p  
                p->adjvex=j;  
                p->info=g.edges[i][j];  
                p->nextarc=G->adjlist[i].firstarc;      //采用头插法插入*p  
                G->adjlist[i].firstarc=p;  
            }  
    G->n=g.n;  
    G->e=g.e;  
}  

void ListToMat(ALGraph *G,MGraph &g)  
//将邻接表G转换成邻接矩阵g  
{  
    int i,j;  
    ArcNode *p;  
    for (i=0; i<g.n; i++)   //先初始化邻接矩阵  
        for (j=0; j<g.n; j++)  
            g.edges[i][j]=0;  
    for (i=0; i<G->n; i++)  //根据邻接表,为邻接矩阵赋值  
    {  
        p=G->adjlist[i].firstarc;  
        while (p!=NULL)  
        {  
            g.edges[i][p->adjvex]=p->info;  
            p=p->nextarc;  
        }  
    }  
    g.n=G->n;  
    g.e=G->e;  
}  




void DispMat(MGraph g)  
//输出邻接矩阵g  
{  
    int i,j;  
    for (i=0; i<g.n; i++)  
    {  
        for (j=0; j<g.n; j++)  
            if (g.edges[i][j]==INF)  
                printf("%3s","∞");  
            else  
                printf("%3d",g.edges[i][j]);  
        printf("\n");  
    }  
}  




void DispAdj(ALGraph *G)  
//输出邻接表G  
{  
    int i;  
    ArcNode *p;  
    for (i=0; i<G->n; i++)  
    {  
        p=G->adjlist[i].firstarc;  
        printf("%3d: ",i);  
        while (p!=NULL)  
        {  
            printf("-->%d/%d ",p->adjvex,p->info);  
            p=p->nextarc;  
        }  
        printf("\n");  
    }  
}
main.cpp的代码
#include "graph.h"  
int main()  
{  
    MGraph g1,g2;  
    ALGraph *G1,*G2;  
    int A[6][6]=  
    {  
        {0,5,0,7,0,0},  
        {0,0,4,0,0,0},  
        {8,0,0,0,0,9},  
        {0,0,5,0,0,6},  
        {0,0,0,5,0,0},  
        {3,0,0,0,1,0}  
    };  
     ArrayToMat(A[0], 6, g1);  //取二维数组的起始地址作实参,用A[0],因其实质为一维数组地址,与形参匹配  
    printf(" 有向图g1的邻接矩阵:\n");  
    DispMat(g1);  
    ArrayToList(A[0], 6, G1);  
    printf(" 有向图G1的邻接表:\n");  
    DispAdj(G1);  
    MatToList(g1,G2);  
    printf(" 图g1的邻接矩阵转换成邻接表G2:\n");  
    DispAdj(G2);  
    ListToMat(G1,g2);  
    printf(" 图G1的邻接表转换成邻接邻阵g2:\n");  
    DispMat(g2);  
    printf("\n");  
    return 0;  
}
运行结果:

知识点总结

   定义图的算法库。
学习心得:
   图在生活中方方面面有大的利用,比如电网、交通网、互联网社交等等,使用邻接矩阵实现图的基本运算。


0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:20080次
    • 积分:968
    • 等级:
    • 排名:千里之外
    • 原创:80篇
    • 转载:0篇
    • 译文:0篇
    • 评论:1条
    最新评论