关闭

放苹果 问题

标签: OJ
147人阅读 评论(0) 收藏 举报
分类:

描述:把M个同样的苹果放在N个同样的盘子里,允许有的盘子空着不放,问共有多少种不同的分法?(用K表示)5,1,1和1,5,1 是同一种分法。
输入 每个用例包含二个整数M和N。0<=m<=10,1<=n<=10。<=n<=10<=m<=10
样例输入 7 3
样例输出 8

解题分析:
设f(m,n) 为m个苹果,n个盘子的放法数目,则先对n作讨论,
当n>m:必定有n-m个盘子永远空着,去掉它们对摆放苹果方法数目不产生影响。即if(n>m) f(m,n) = f(m,m)  
当n<=m:不同的放法可以分成两类:
1、有至少一个盘子空着,即相当于f(m,n) = f(m,n-1);
2、所有盘子都有苹果,相当于可以从每个盘子中拿掉一个苹果,不影响不同放法的数目,即f(m,n) = f(m-n,n).
而总的放苹果的放法数目等于两者的和,即 f(m,n) =f(m,n-1)+f(m-n,n)
递归出口条件说明:
当n=1时,所有苹果都必须放在一个盘子里,所以返回1;
当没有苹果可放时,定义为1种放法;
递归的两条路,第一条n会逐渐减少,终会到达出口n==1;
第二条m会逐渐减少,因为n>m时,我们会return f(m,m) 所以终会到达出口m==0.

import java.util.*;

public class Main {
    public static void main(String[] args) {
        Scanner scanner = new Scanner(System.in);
        int m = scanner.nextInt(); // 苹果树
        int n = scanner.nextInt(); // 盘子树
        System.out.println(funApple(m,n));
        scanner.close();
    }

    public static int funApple(int m, int n) // m个苹果放在n个盘子中共有几种方法
    {
        if (m == 0 || n == 1) // 因为我们总是让m>=n来求解的,所以m-n>=0,所以让m=0时候结束,如果改为m=1,
            return 1; // 则可能出现m-n=0的情况从而不能得到正确解
        if (n > m)
            return funApple(m, m);
        else
            return funApple(m, n - 1) + funApple(m - n, n);
    }
}
0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:35026次
    • 积分:1065
    • 等级:
    • 排名:千里之外
    • 原创:71篇
    • 转载:13篇
    • 译文:2篇
    • 评论:1条
    最新评论