放苹果 问题

原创 2015年11月18日 18:25:22

描述:把M个同样的苹果放在N个同样的盘子里,允许有的盘子空着不放,问共有多少种不同的分法?(用K表示)5,1,1和1,5,1 是同一种分法。
输入 每个用例包含二个整数M和N。0<=m<=10,1<=n<=10。<=n<=10<=m<=10
样例输入 7 3
样例输出 8

解题分析:
设f(m,n) 为m个苹果,n个盘子的放法数目,则先对n作讨论,
当n>m:必定有n-m个盘子永远空着,去掉它们对摆放苹果方法数目不产生影响。即if(n>m) f(m,n) = f(m,m)  
当n<=m:不同的放法可以分成两类:
1、有至少一个盘子空着,即相当于f(m,n) = f(m,n-1);
2、所有盘子都有苹果,相当于可以从每个盘子中拿掉一个苹果,不影响不同放法的数目,即f(m,n) = f(m-n,n).
而总的放苹果的放法数目等于两者的和,即 f(m,n) =f(m,n-1)+f(m-n,n)
递归出口条件说明:
当n=1时,所有苹果都必须放在一个盘子里,所以返回1;
当没有苹果可放时,定义为1种放法;
递归的两条路,第一条n会逐渐减少,终会到达出口n==1;
第二条m会逐渐减少,因为n>m时,我们会return f(m,m) 所以终会到达出口m==0.

import java.util.*;

public class Main {
    public static void main(String[] args) {
        Scanner scanner = new Scanner(System.in);
        int m = scanner.nextInt(); // 苹果树
        int n = scanner.nextInt(); // 盘子树
        System.out.println(funApple(m,n));
        scanner.close();
    }

    public static int funApple(int m, int n) // m个苹果放在n个盘子中共有几种方法
    {
        if (m == 0 || n == 1) // 因为我们总是让m>=n来求解的,所以m-n>=0,所以让m=0时候结束,如果改为m=1,
            return 1; // 则可能出现m-n=0的情况从而不能得到正确解
        if (n > m)
            return funApple(m, m);
        else
            return funApple(m, n - 1) + funApple(m - n, n);
    }
}
版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

几个经典递归问题(放苹果,红与黑,八皇后,木棍)

9.5 例题:放苹果(一次枚举) 问题描述 把 M 个同样的苹果放在 N 个同样的盘子里,允许有的盘子空着不放,问共有多少种不同的分法?(用 K 表示)注意:5,1,1 和 1,5,1 是同一种...

从放苹果问题想到的

把M个同样的苹果放在N个同样的盘子里,允许有的盘子空着不放,问共有多少种不同的分法?(用K表示) 5,1,1和1,5,1 是同一种分法。这个题目等同于 M个非负整数之和为N,问有多少组不同组合。  ...

放苹果问题

ACM 1664 放苹果很典型的动态规划题很好的算法:f(m, n) = f(m-n, n) + f(m, n-1)f(m, n): 把m个苹果放到n个盘子中的方法数f(m, n-1): 把m个苹果放...

POJ 1664 /NYOJ 758 放苹果问题(递归)

分苹果 时间限制:1000 ms  |  内存限制:65535 KB 难度:2 描述 把M个同样的苹果放在N个同样的盘子里,允许有的盘子空着不放,问共有多少种不同的分法? (注意:假如有3个盘子...

递归--二分查找/判断奇偶数/汉诺塔问题/POJ放苹果

继续上一篇:这里点击查看上一篇。 题目5:二分查找 使用递归二分查找要注意的就是,数组本身是要有顺序的。代码如下: #include "iostream" using namespace std; ...

放苹果问题(递归)

/* *问题描述:把M个同样的苹果放到N个同样的盘子里面,问有多少种不同的算法? 注意:5 1 1和1 5 1是同一种放法 输入:输入一个整数表示有几行测试数据,下面每行分别...

递归 放苹果问题和整数划分问题

放苹果问题 对于m个苹果,n个盘子f(m,n): 如果m 如果m>n,那么有两种情况:一种有空盘子的情况,一种没有空盘子的情况,两种情况不重叠且加一起一定为情况总数。 第一种情况:m个苹果...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)