关闭

第十周项目7 判断二叉树是否相似

标签: 二叉树
220人阅读 评论(0) 收藏 举报
分类:
/*
*Copyright (c) 2015,烟台大学计算机学院
*All rights reserved.
*文件名称:erchashu.cpp
*作者:朱希康
*完成日期:2015年11月18日
*版本号:vc++6.0
*
*问题描述:二叉树解决问题
*输入描述:无
*程序输出:二叉树是否相似
*/


#ifndef BTREE_H_INCLUDED
#define BTREE_H_INCLUDED

#define MaxSize 100
typedef char ElemType;
typedef struct node
{
    ElemType data;              //数据元素
    struct node *lchild;        //指向左孩子
    struct node *rchild;        //指向右孩子
} BTNode;
void CreateBTNode(BTNode *&b,char *str);        //由str串创建二叉链
BTNode *FindNode(BTNode *b,ElemType x);     //返回data域为x的节点指针
BTNode *LchildNode(BTNode *p);  //返回*p节点的左孩子节点指针
BTNode *RchildNode(BTNode *p);  //返回*p节点的右孩子节点指针
int BTNodeDepth(BTNode *b); //求二叉树b的深度
void DispBTNode(BTNode *b); //以括号表示法输出二叉树
void DestroyBTNode(BTNode *&b);  //销毁二叉树
int Nodes(BTNode *b);
void DispLeaf(BTNode *b);
int LeafNodes(BTNode *b);
int Level(BTNode *b,ElemType x,int h);
int Like(BTNode *b1,BTNode *b2);
#endif // BTREE_H_INCLUDED


#include <stdio.h>
#include "head.h"

int main()
{
    BTNode *b1, *b2, *b3;
    CreateBTNode(b1,"B(D,E(H(J,K(L,M(,N)))))");
    CreateBTNode(b2,"A(B(D(,G)),C(E,F))");
    CreateBTNode(b3,"u(v(w(,x)),y(z,p))");
    if(Like(b1, b2))
        printf("b1和b2相似\n");
    else
        printf("b1和b2不相似\n");
    if(Like(b2, b3))
        printf("b2和b3相似\n");
    else
        printf("b2和b3不相似\n");
    DestroyBTNode(b1);
    DestroyBTNode(b2);
    DestroyBTNode(b3);
    return 0;
}


#include <stdio.h>
#include <malloc.h>
#include "head.h"

void CreateBTNode(BTNode *&b,char *str)     //由str串创建二叉链
{
    BTNode *St[MaxSize],*p=NULL;
    int top=-1,k,j=0;
    char ch;
    b=NULL;             //建立的二叉树初始时为空
    ch=str[j];
    while (ch!='\0')    //str未扫描完时循环
    {
        switch(ch)
        {
        case '(':
            top++;
            St[top]=p;
            k=1;
            break;      //为左节点
        case ')':
            top--;
            break;
        case ',':
            k=2;
            break;                          //为右节点
        default:
            p=(BTNode *)malloc(sizeof(BTNode));
            p->data=ch;
            p->lchild=p->rchild=NULL;
            if (b==NULL)                    //p指向二叉树的根节点
                b=p;
            else                            //已建立二叉树根节点
            {
                switch(k)
                {
                case 1:
                    St[top]->lchild=p;
                    break;
                case 2:
                    St[top]->rchild=p;
                    break;
                }
            }
        }
        j++;
        ch=str[j];
    }
}
BTNode *FindNode(BTNode *b,ElemType x)  //返回data域为x的节点指针
{
    BTNode *p;
    if (b==NULL)
        return NULL;
    else if (b->data==x)
        return b;
    else
    {
        p=FindNode(b->lchild,x);
        if (p!=NULL)
            return p;
        else
            return FindNode(b->rchild,x);
    }
}
BTNode *LchildNode(BTNode *p)   //返回*p节点的左孩子节点指针
{
    return p->lchild;
}
BTNode *RchildNode(BTNode *p)   //返回*p节点的右孩子节点指针
{
    return p->rchild;
}
int BTNodeDepth(BTNode *b)  //求二叉树b的深度
{
    int lchilddep,rchilddep;
    if (b==NULL)
        return(0);                          //空树的高度为0
    else
    {
        lchilddep=BTNodeDepth(b->lchild);   //求左子树的高度为lchilddep
        rchilddep=BTNodeDepth(b->rchild);   //求右子树的高度为rchilddep
        return (lchilddep>rchilddep)? (lchilddep+1):(rchilddep+1);
    }
}
void DispBTNode(BTNode *b)  //以括号表示法输出二叉树
{
    if (b!=NULL)
    {
        printf("%c",b->data);
        if (b->lchild!=NULL || b->rchild!=NULL)
        {
            printf("(");
            DispBTNode(b->lchild);
            if (b->rchild!=NULL) printf(",");
            DispBTNode(b->rchild);
            printf(")");
        }
    }
}
void DestroyBTNode(BTNode *&b)   //销毁二叉树
{
    if (b!=NULL)
    {
        DestroyBTNode(b->lchild);
        DestroyBTNode(b->rchild);
        free(b);
    }
}
int Nodes(BTNode *b)
{
    if (b==NULL)
        return 0;
    else
        return Nodes(b->lchild)+Nodes(b->rchild)+1;
}
void DispLeaf(BTNode *b)
{
    if (b!=NULL)
    {
        if (b->lchild==NULL && b->rchild==NULL)
            printf("%c ",b->data);
        else
        {
            DispLeaf(b->lchild);
            DispLeaf(b->rchild);
        }
    }
}
int LeafNodes(BTNode *b)    //求二叉树b的叶子节点个数
{
    int num1,num2;
    if (b==NULL)
        return 0;
    else if (b->lchild==NULL && b->rchild==NULL)
        return 1;
    else
    {
        num1=LeafNodes(b->lchild);
        num2=LeafNodes(b->rchild);
        return (num1+num2);
    }
}
int Level(BTNode *b,ElemType x,int h)
{
    int l;
    if (b==NULL)
        return 0;
    else if (b->data==x)
        return h;
    else
    {
        l=Level(b->lchild,x,h+1);
        if (l==0)
            return Level(b->rchild,x,h+1);
        else
            return l;
    }
}

int Like(BTNode *b1,BTNode *b2)
{
    int like1,like2;
    if (b1==NULL && b2==NULL)
        return 1;
    else if (b1==NULL || b2==NULL)
        return 0;
    else
    {
        like1=Like(b1->lchild,b2->lchild);
        like2=Like(b1->rchild,b2->rchild);
        return (like1 & like2);
    }
}


运行结果:

知识点总结:

判断多个二叉树是否为空或者根节点相似且左子树和右子树分别相似即为二叉树的相似,否则输入的二叉树不相似。

0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:22064次
    • 积分:1108
    • 等级:
    • 排名:千里之外
    • 原创:91篇
    • 转载:4篇
    • 译文:0篇
    • 评论:16条
    文章分类
    最新评论