第十一周项目2 二叉树构造算法--先序序列和中序序列构造算法

原创 2015年11月20日 09:20:06
/*
*Copyright (c) 2015,烟台大学计算机学院
*All rights reserved.
*文件名称:cengcibianli.cpp
*作者:朱希康
*完成日期:2015年11月20日
*版本号:vc++6.0
*
*问题描述:二叉树构造
*输入描述:无
*程序输出:二叉树
*/

#ifndef BTREE_H_INCLUDED
#define BTREE_H_INCLUDED

#define MaxSize 100
#include<stdio.h>
typedef char ElemType;
typedef struct node
{
    ElemType data;              //数据元素
    struct node *lchild;        //指向左孩子
    struct node *rchild;        //指向右孩子
} BTNode;
void CreateBTNode(BTNode *&b,char *str);        //由str串创建二叉链
BTNode *FindNode(BTNode *b,ElemType x);     //返回data域为x的节点指针
BTNode *LchildNode(BTNode *p);  //返回*p节点的左孩子节点指针
BTNode *RchildNode(BTNode *p);  //返回*p节点的右孩子节点指针
int BTNodeDepth(BTNode *b); //求二叉树b的深度
void DispBTNode(BTNode *b); //以括号表示法输出二叉树
void DestroyBTNode(BTNode *&b);  //销毁二叉树
void LevelOrder(BTNode *b);
BTNode *CreateBT1(char *pre,char *in,int n);//中序序列和先序序列构造
#endif // BTREE_H_INCLUDED

#include "head.h"
int main()
{
  ElemType pre[]="ABDGCEF",in[]="DGBAECF";
    BTNode *b1;
    b1=CreateBT1(pre,in,7);
    printf("b1:");
    DispBTNode(b1);
    printf("\n");
    return 0;

}

#include <malloc.h>
#include "head.h"

void CreateBTNode(BTNode *&b,char *str)     //由str串创建二叉链
{
    BTNode *St[MaxSize],*p=NULL;
    int top=-1,k,j=0;
    char ch;
    b=NULL;             //建立的二叉树初始时为空
    ch=str[j];
    while (ch!='\0')    //str未扫描完时循环
    {
        switch(ch)
        {
        case '(':
            top++;
            St[top]=p;
            k=1;
            break;      //为左节点
        case ')':
            top--;
            break;
        case ',':
            k=2;
            break;                          //为右节点
        default:
            p=(BTNode *)malloc(sizeof(BTNode));
            p->data=ch;
            p->lchild=p->rchild=NULL;
            if (b==NULL)                    //p指向二叉树的根节点
                b=p;
            else                            //已建立二叉树根节点
            {
                switch(k)
                {
                case 1:
                    St[top]->lchild=p;
                    break;
                case 2:
                    St[top]->rchild=p;
                    break;
                }
            }
        }
        j++;
        ch=str[j];
    }
}
BTNode *FindNode(BTNode *b,ElemType x)  //返回data域为x的节点指针
{
    BTNode *p;
    if (b==NULL)
        return NULL;
    else if (b->data==x)
        return b;
    else
    {
        p=FindNode(b->lchild,x);
        if (p!=NULL)
            return p;
        else
            return FindNode(b->rchild,x);
    }
}
BTNode *LchildNode(BTNode *p)   //返回*p节点的左孩子节点指针
{
    return p->lchild;
}
BTNode *RchildNode(BTNode *p)   //返回*p节点的右孩子节点指针
{
    return p->rchild;
}
int BTNodeDepth(BTNode *b)  //求二叉树b的深度
{
    int lchilddep,rchilddep;
    if (b==NULL)
        return(0);                          //空树的高度为0
    else
    {
        lchilddep=BTNodeDepth(b->lchild);   //求左子树的高度为lchilddep
        rchilddep=BTNodeDepth(b->rchild);   //求右子树的高度为rchilddep
        return (lchilddep>rchilddep)? (lchilddep+1):(rchilddep+1);
    }
}
void DispBTNode(BTNode *b)  //以括号表示法输出二叉树
{
    if (b!=NULL)
    {
        printf("%c",b->data);
        if (b->lchild!=NULL || b->rchild!=NULL)
        {
            printf("(");
            DispBTNode(b->lchild);
            if (b->rchild!=NULL) printf(",");
            DispBTNode(b->rchild);
            printf(")");
        }
    }
}
void DestroyBTNode(BTNode *&b)   //销毁二叉树
{
    if (b!=NULL)
    {
        DestroyBTNode(b->lchild);
        DestroyBTNode(b->rchild);
        free(b);
    }
}
//层次遍历
void LevelOrder(BTNode *b)
{
    BTNode *p;
    BTNode *qu[MaxSize];
    int front,rear;
    front=rear=-1;
    rear++;
    qu[rear]=b;
    while(front!=rear)
    {
        front=(front+1)%MaxSize;
        p=qu[front];
        printf("%c",p->data);
        if(p->lchild!=NULL)
        {
            rear=(rear+1)%MaxSize;
            qu[rear]=p->lchild;
        }
        if(p->rchild!=NULL)
        {
            rear=(rear+1)%MaxSize;
            qu[rear]=p->rchild;
        }
    }
}
//中序序列和先序序列构造
BTNode *CreateBT1(char *pre,char *in,int n)
{
    BTNode *s;
    char *p;
    int k;
    if (n<=0) return NULL;
    s=(BTNode *)malloc(sizeof(BTNode));     //创建二叉树结点*s
    s->data=*pre;
    for (p=in; p<in+n; p++)                 //在中序序列中找等于*ppos的位置k
        if (*p==*pre)                       //pre指向根结点
            break;                          //在in中找到后退出循环
    k=p-in;                                 //确定根结点在in中的位置
    s->lchild=CreateBT1(pre+1,in,k);        //递归构造左子树
    s->rchild=CreateBT1(pre+k+1,p+1,n-k-1); //递归构造右子树
    return s;

}


运行结果:

知识点总结:

根据定理可知,任何n(n>=0)个不同节点的二叉树,都可由它的中序序列和先序序列唯一确定。先序序列的作用是确定二叉树的根节点,中序序列用来确定左右子树的中序序列,进而确定左右子树的先序序列。

第十一周项目一 验证算法(2)二叉树构造算法的验证(先序和中序)

问题及代码: /* *烟台大学计算机与控制工程学院 *作 者:孙丽玮 *完成日期:2016年11月10日 *问题描述:任何n(n≥0)个不同节点的二叉...

第十周项目一 二叉树构造算法的验证---先序和中序序列构造二叉树(2)

/* 烟台大学 计算机与控制工程学院 文件名称:二叉树构造算法的验证 作 者:胡德杰 完成日期:2017年11月30号 版 本 号:v1.1.29 */ #include #include ...

第十周 项目二 - 二叉树算法验证之由先序序列和中序序列构造

/* Copyright (c)2017,烟台大学计算机与控制工程学院 All rights reserved. 文件名称:第十周项目1 - 二叉树算法验证(1).cpp 作 者:孙仁圆...

第十一周项目2 二叉树构造算法--中序序列和后序序列构造二叉树

/* *Copyright (c) 2015,烟台大学计算机学院 *All rights reserved. *文件名称:cengcibianli.cpp *作者:朱希康 *完成日期:201...

第11周项目1-(2)二叉树构造算法的验证、由先序序列和中序序列构造二叉树

问题及代码: (1)btree.h #ifndef BTREE_H_INCLUDED #define BTREE_H_INCLUDED #define MaxSize 100 typede...

由先序与中序序列构造二叉树

  • 2013年11月19日 23:09
  • 1015B
  • 下载

第十一周项目1(2)由后序序列和中序序列构造二叉树

问题及代码: #ifndef BTREE_H_INCLUDED #define BTREE_H_INCLUDED /* *烟台大学计控学院 *作 者:孙启先 *...

第十一周 项目1-(2)二叉树构造的算法认证--由后序和先序构造二叉树

问题描述及代码: /* *烟台大学计算机与控制工程学院 *作 者:张晓彤 *完成日期:2016年11月6日 *问题描述:任何n(n>0)个不同节点的二叉树,都可...

第十周 项目二 - 二叉树算法验证之由后序序列和中序序列构造二叉树

/* Copyright (c)2017,烟台大学计算机与控制工程学院 All rights reserved. 文件名称:第十周项目二 - 二叉树算法验证(2).cpp 作 者:孙仁圆 完成日...

根据先序序列和中序序列构造二叉树

根据先序序列和后序序列构造二叉树,
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:第十一周项目2 二叉树构造算法--先序序列和中序序列构造算法
举报原因:
原因补充:

(最多只允许输入30个字)