第十一周项目2 二叉树构造算法--先序序列和中序序列构造算法

原创 2015年11月20日 09:20:06
/*
*Copyright (c) 2015,烟台大学计算机学院
*All rights reserved.
*文件名称:cengcibianli.cpp
*作者:朱希康
*完成日期:2015年11月20日
*版本号:vc++6.0
*
*问题描述:二叉树构造
*输入描述:无
*程序输出:二叉树
*/

#ifndef BTREE_H_INCLUDED
#define BTREE_H_INCLUDED

#define MaxSize 100
#include<stdio.h>
typedef char ElemType;
typedef struct node
{
    ElemType data;              //数据元素
    struct node *lchild;        //指向左孩子
    struct node *rchild;        //指向右孩子
} BTNode;
void CreateBTNode(BTNode *&b,char *str);        //由str串创建二叉链
BTNode *FindNode(BTNode *b,ElemType x);     //返回data域为x的节点指针
BTNode *LchildNode(BTNode *p);  //返回*p节点的左孩子节点指针
BTNode *RchildNode(BTNode *p);  //返回*p节点的右孩子节点指针
int BTNodeDepth(BTNode *b); //求二叉树b的深度
void DispBTNode(BTNode *b); //以括号表示法输出二叉树
void DestroyBTNode(BTNode *&b);  //销毁二叉树
void LevelOrder(BTNode *b);
BTNode *CreateBT1(char *pre,char *in,int n);//中序序列和先序序列构造
#endif // BTREE_H_INCLUDED

#include "head.h"
int main()
{
  ElemType pre[]="ABDGCEF",in[]="DGBAECF";
    BTNode *b1;
    b1=CreateBT1(pre,in,7);
    printf("b1:");
    DispBTNode(b1);
    printf("\n");
    return 0;

}

#include <malloc.h>
#include "head.h"

void CreateBTNode(BTNode *&b,char *str)     //由str串创建二叉链
{
    BTNode *St[MaxSize],*p=NULL;
    int top=-1,k,j=0;
    char ch;
    b=NULL;             //建立的二叉树初始时为空
    ch=str[j];
    while (ch!='\0')    //str未扫描完时循环
    {
        switch(ch)
        {
        case '(':
            top++;
            St[top]=p;
            k=1;
            break;      //为左节点
        case ')':
            top--;
            break;
        case ',':
            k=2;
            break;                          //为右节点
        default:
            p=(BTNode *)malloc(sizeof(BTNode));
            p->data=ch;
            p->lchild=p->rchild=NULL;
            if (b==NULL)                    //p指向二叉树的根节点
                b=p;
            else                            //已建立二叉树根节点
            {
                switch(k)
                {
                case 1:
                    St[top]->lchild=p;
                    break;
                case 2:
                    St[top]->rchild=p;
                    break;
                }
            }
        }
        j++;
        ch=str[j];
    }
}
BTNode *FindNode(BTNode *b,ElemType x)  //返回data域为x的节点指针
{
    BTNode *p;
    if (b==NULL)
        return NULL;
    else if (b->data==x)
        return b;
    else
    {
        p=FindNode(b->lchild,x);
        if (p!=NULL)
            return p;
        else
            return FindNode(b->rchild,x);
    }
}
BTNode *LchildNode(BTNode *p)   //返回*p节点的左孩子节点指针
{
    return p->lchild;
}
BTNode *RchildNode(BTNode *p)   //返回*p节点的右孩子节点指针
{
    return p->rchild;
}
int BTNodeDepth(BTNode *b)  //求二叉树b的深度
{
    int lchilddep,rchilddep;
    if (b==NULL)
        return(0);                          //空树的高度为0
    else
    {
        lchilddep=BTNodeDepth(b->lchild);   //求左子树的高度为lchilddep
        rchilddep=BTNodeDepth(b->rchild);   //求右子树的高度为rchilddep
        return (lchilddep>rchilddep)? (lchilddep+1):(rchilddep+1);
    }
}
void DispBTNode(BTNode *b)  //以括号表示法输出二叉树
{
    if (b!=NULL)
    {
        printf("%c",b->data);
        if (b->lchild!=NULL || b->rchild!=NULL)
        {
            printf("(");
            DispBTNode(b->lchild);
            if (b->rchild!=NULL) printf(",");
            DispBTNode(b->rchild);
            printf(")");
        }
    }
}
void DestroyBTNode(BTNode *&b)   //销毁二叉树
{
    if (b!=NULL)
    {
        DestroyBTNode(b->lchild);
        DestroyBTNode(b->rchild);
        free(b);
    }
}
//层次遍历
void LevelOrder(BTNode *b)
{
    BTNode *p;
    BTNode *qu[MaxSize];
    int front,rear;
    front=rear=-1;
    rear++;
    qu[rear]=b;
    while(front!=rear)
    {
        front=(front+1)%MaxSize;
        p=qu[front];
        printf("%c",p->data);
        if(p->lchild!=NULL)
        {
            rear=(rear+1)%MaxSize;
            qu[rear]=p->lchild;
        }
        if(p->rchild!=NULL)
        {
            rear=(rear+1)%MaxSize;
            qu[rear]=p->rchild;
        }
    }
}
//中序序列和先序序列构造
BTNode *CreateBT1(char *pre,char *in,int n)
{
    BTNode *s;
    char *p;
    int k;
    if (n<=0) return NULL;
    s=(BTNode *)malloc(sizeof(BTNode));     //创建二叉树结点*s
    s->data=*pre;
    for (p=in; p<in+n; p++)                 //在中序序列中找等于*ppos的位置k
        if (*p==*pre)                       //pre指向根结点
            break;                          //在in中找到后退出循环
    k=p-in;                                 //确定根结点在in中的位置
    s->lchild=CreateBT1(pre+1,in,k);        //递归构造左子树
    s->rchild=CreateBT1(pre+k+1,p+1,n-k-1); //递归构造右子树
    return s;

}


运行结果:

知识点总结:

根据定理可知,任何n(n>=0)个不同节点的二叉树,都可由它的中序序列和先序序列唯一确定。先序序列的作用是确定二叉树的根节点,中序序列用来确定左右子树的中序序列,进而确定左右子树的先序序列。

根据先序序列和中序序列创建二叉树

思考:如何才能确定一棵树? 结论:    通过中序遍历和先序遍历可以确定一个树                 通过中序遍历和后续遍历可以确定一个树                 通过先序遍历和后序...
  • bbs375
  • bbs375
  • 2016年10月06日 19:12
  • 7759

由先序+后序遍历确定序列是否唯一并输出一个中序序列

由先序+后序遍历确定序列是否唯一并输出一个中序序列@(算法学习)在前面讨论过如何确定两种唯一二叉树的情况。 先序+中序 后序+中序 中序是必须要有的,因此按照这个提示原则,我们根据根在先序或后序的位置...
  • u011240016
  • u011240016
  • 2016年11月17日 01:09
  • 875

根据前序和中序序列确定二叉树

方法1、确定树的根节点。树根是当前树中所有元素在前序遍历中最先出现的元素。 2、求解树的子树。找出根节点在中序遍历中的位置,根左边的所有元素就是左子树,根右边的所有元素就是右子树。若根节点左边或右边...
  • luoluozlb
  • luoluozlb
  • 2016年08月08日 21:04
  • 3133

已知一颗二叉树的前序和中序序列,唯一的确定一颗二叉树

已知一颗二叉树的前序和中序序列,唯一的确定一颗二叉树,由此构造二叉树的递归算法。设前序序列和中序序列分别存放两个一维数组,pre(1,n)和ind(1,n),按前序序列pre(i,j)和中序序列ind...
  • fisher_jiang
  • fisher_jiang
  • 2006年06月19日 15:51
  • 5740

给出先序序列,中序序列恢复二叉树

//给出先序序列,中序序列恢复出二叉树的方法 //方法1:利用递归的方法,首先先找出根节点,然后有先序和后序的特点可知:先序序列中在根节点左边的是左子树,根节点右面的是右子树 //有此来,进行递归...
  • qq_28633157
  • qq_28633157
  • 2015年11月15日 21:14
  • 444

已知二叉树先序序列和中序序列,求后序序列

回答了百度知道上的一个提问,原题是这样的: 当一棵二叉树前序序列和中序序列分别为HGEDBFCA和EGBDHFAC时,其后序序列为什么?当一棵二叉树前序序列和中序序列分别为HGEDBFCA和EGBDH...
  • u011215133
  • u011215133
  • 2017年06月15日 11:06
  • 1342

[LeetCode] 由前序和中序序列,构建二叉树

相关问题:从BST的前序遍历序列恢复该BST 已知二叉树的前序遍历序列和中序遍历序列,要求重新恢复该二叉树。 #include #include #include #include usi...
  • jiyanfeng1
  • jiyanfeng1
  • 2013年02月23日 05:31
  • 1196

根据先中序序列或后中序序列确定二叉树

根据后中序序列生成二叉树:从后序序列中找到二叉树(或者子树)的根结点,然后在中序序列找到该根结点,根结点将中序序列分成左右两部分,左边为左子树,右边为右子树。根据中序序列确定左子树的长度,确定左子树中...
  • QiaoRuoZhuo
  • QiaoRuoZhuo
  • 2014年10月03日 11:36
  • 1848

如何由二叉树的先序和中序序列画出二叉树

(概括为一个口诀:先序放中间,中序分两边)    基本思想就是递归: 1.取出先序的第一个节点。(先序中的节点为根节点) 2.用第一个节点可以将中序分成左右子树,然后又取出先序的第二个节点...
  • mcumsj1
  • mcumsj1
  • 2015年08月11日 15:19
  • 977

根据二叉树的前序序列和中序序列得到后序序列

一个例子: 前序序列:abdgcefh 中序序列:dgbaechf 求:后序序列 分析: 根据前序序列可知,a肯定是根节点。再在中序序列中找到a,发现a左侧是dgb,右侧是echf,则dgb...
  • zhimajiejie
  • zhimajiejie
  • 2012年10月10日 15:42
  • 3656
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:第十一周项目2 二叉树构造算法--先序序列和中序序列构造算法
举报原因:
原因补充:

(最多只允许输入30个字)