第十一周项目2 二叉树构造算法--中序序列和后序序列构造二叉树

原创 2015年11月20日 09:27:02
/*
*Copyright (c) 2015,烟台大学计算机学院
*All rights reserved.
*文件名称:cengcibianli.cpp
*作者:朱希康
*完成日期:2015年11月20日
*版本号:vc++6.0
*
*问题描述:二叉树构造
*输入描述:无
*程序输出:二叉树
*/

#ifndef BTREE_H_INCLUDED
#define BTREE_H_INCLUDED

#define MaxSize 100
#include<stdio.h>
typedef char ElemType;
typedef struct node
{
    ElemType data;              //数据元素
    struct node *lchild;        //指向左孩子
    struct node *rchild;        //指向右孩子
} BTNode;
void CreateBTNode(BTNode *&b,char *str);        //由str串创建二叉链
BTNode *FindNode(BTNode *b,ElemType x);     //返回data域为x的节点指针
BTNode *LchildNode(BTNode *p);  //返回*p节点的左孩子节点指针
BTNode *RchildNode(BTNode *p);  //返回*p节点的右孩子节点指针
int BTNodeDepth(BTNode *b); //求二叉树b的深度
void DispBTNode(BTNode *b); //以括号表示法输出二叉树
void DestroyBTNode(BTNode *&b);  //销毁二叉树
void LevelOrder(BTNode *b);
BTNode *CreateBT1(char *pre,char *in,int n);//中序序列和先序序列构造
BTNode *CreateBT2(char *pre,char *in,int n);//中序序列和后序序列构造
#endif // BTREE_H_INCLUDED

#include "head.h"
int main()
{
    ElemType in[]="DGBAECF",post[]="GDBEFCA";
    BTNode *b2;
    b2=CreateBT2(post,in,7);
    printf("b2:");
    DispBTNode(b2);
    printf("\n");
    return 0;



}

#include <malloc.h>
#include "head.h"

void CreateBTNode(BTNode *&b,char *str)     //由str串创建二叉链
{
    BTNode *St[MaxSize],*p=NULL;
    int top=-1,k,j=0;
    char ch;
    b=NULL;             //建立的二叉树初始时为空
    ch=str[j];
    while (ch!='\0')    //str未扫描完时循环
    {
        switch(ch)
        {
        case '(':
            top++;
            St[top]=p;
            k=1;
            break;      //为左节点
        case ')':
            top--;
            break;
        case ',':
            k=2;
            break;                          //为右节点
        default:
            p=(BTNode *)malloc(sizeof(BTNode));
            p->data=ch;
            p->lchild=p->rchild=NULL;
            if (b==NULL)                    //p指向二叉树的根节点
                b=p;
            else                            //已建立二叉树根节点
            {
                switch(k)
                {
                case 1:
                    St[top]->lchild=p;
                    break;
                case 2:
                    St[top]->rchild=p;
                    break;
                }
            }
        }
        j++;
        ch=str[j];
    }
}
BTNode *FindNode(BTNode *b,ElemType x)  //返回data域为x的节点指针
{
    BTNode *p;
    if (b==NULL)
        return NULL;
    else if (b->data==x)
        return b;
    else
    {
        p=FindNode(b->lchild,x);
        if (p!=NULL)
            return p;
        else
            return FindNode(b->rchild,x);
    }
}
BTNode *LchildNode(BTNode *p)   //返回*p节点的左孩子节点指针
{
    return p->lchild;
}
BTNode *RchildNode(BTNode *p)   //返回*p节点的右孩子节点指针
{
    return p->rchild;
}
int BTNodeDepth(BTNode *b)  //求二叉树b的深度
{
    int lchilddep,rchilddep;
    if (b==NULL)
        return(0);                          //空树的高度为0
    else
    {
        lchilddep=BTNodeDepth(b->lchild);   //求左子树的高度为lchilddep
        rchilddep=BTNodeDepth(b->rchild);   //求右子树的高度为rchilddep
        return (lchilddep>rchilddep)? (lchilddep+1):(rchilddep+1);
    }
}
void DispBTNode(BTNode *b)  //以括号表示法输出二叉树
{
    if (b!=NULL)
    {
        printf("%c",b->data);
        if (b->lchild!=NULL || b->rchild!=NULL)
        {
            printf("(");
            DispBTNode(b->lchild);
            if (b->rchild!=NULL) printf(",");
            DispBTNode(b->rchild);
            printf(")");
        }
    }
}
void DestroyBTNode(BTNode *&b)   //销毁二叉树
{
    if (b!=NULL)
    {
        DestroyBTNode(b->lchild);
        DestroyBTNode(b->rchild);
        free(b);
    }
}
//层次遍历
void LevelOrder(BTNode *b)
{
    BTNode *p;
    BTNode *qu[MaxSize];
    int front,rear;
    front=rear=-1;
    rear++;
    qu[rear]=b;
    while(front!=rear)
    {
        front=(front+1)%MaxSize;
        p=qu[front];
        printf("%c",p->data);
        if(p->lchild!=NULL)
        {
            rear=(rear+1)%MaxSize;
            qu[rear]=p->lchild;
        }
        if(p->rchild!=NULL)
        {
            rear=(rear+1)%MaxSize;
            qu[rear]=p->rchild;
        }
    }
}
//中序序列和先序序列构造
BTNode *CreateBT1(char *pre,char *in,int n)
{
    BTNode *s;
    char *p;
    int k;
    if (n<=0) return NULL;
    s=(BTNode *)malloc(sizeof(BTNode));     //创建二叉树结点*s
    s->data=*pre;
    for (p=in; p<in+n; p++)                 //在中序序列中找等于*ppos的位置k
        if (*p==*pre)                       //pre指向根结点
            break;                          //在in中找到后退出循环
    k=p-in;                                 //确定根结点在in中的位置
    s->lchild=CreateBT1(pre+1,in,k);        //递归构造左子树
    s->rchild=CreateBT1(pre+k+1,p+1,n-k-1); //递归构造右子树
    return s;

}
//中序序列和后序序列构造
BTNode *CreateBT2(char *post,char *in,int n)
{
     BTNode *s;
    char r,*p;
    int k;
    if (n<=0) return NULL;
    r=*(post+n-1);                          //根结点值
    s=(BTNode *)malloc(sizeof(BTNode));     //创建二叉树结点*s
    s->data=r;
    for (p=in; p<in+n; p++)                 //在in中查找根结点
        if (*p==r)
            break;
    k=p-in;                                 //k为根结点在in中的下标
    s->lchild=CreateBT2(post,in,k);         //递归构造左子树
    s->rchild=CreateBT2(post+k,p+1,n-k-1);  //递归构造右子树
    return s;



}


运行结果:

知识点总结:

根据定理可知,任何n(n>=0)个不同节点的二叉树,都可由它的中序序列和后序序列唯一确定。

实现由先序、中序序列构造二叉树的算法,实现由后序、中序序列构造二叉树的算法

一道上机题 思想是递归 如果不理解原理可以看这个博客 注释里的说明很详细:http://blog.csdn.net/yunzhongguwu005/article/details/9270085 在代...
  • Frozensmile
  • Frozensmile
  • 2017年11月14日 14:33
  • 243

已知先序+中序构造二叉树,已知后序+中序构造二叉树(C语言)

代码如下: #include #include typedef struct Bitree{ char data; struct Bitree *lchild; struct Bitree *...
  • Singular__point
  • Singular__point
  • 2016年12月29日 21:21
  • 673

已知二叉树先序序列和中序序列,求后序序列

回答了百度知道上的一个提问,原题是这样的: 当一棵二叉树前序序列和中序序列分别为HGEDBFCA和EGBDHFAC时,其后序序列为什么?当一棵二叉树前序序列和中序序列分别为HGEDBFCA和EGBDH...
  • u011215133
  • u011215133
  • 2017年06月15日 11:06
  • 1228

前序遍历序列和中序遍历序列构造二叉树算法

前序,中序遍历,在此就不向大家向下说明了,如有不懂请先理解,再来看此篇文章。 当我们拿到前序和中序时,如何重新构建一颗新的数呢? 首先,大家都知道的,由中序遍历序列可知,第一个节点是根节点, 其...
  • github_35124642
  • github_35124642
  • 2016年06月22日 16:31
  • 583

已知二叉树的先序遍历序列和中序遍历序列,输出该二叉树的后序遍历序列

题目描述 输入二叉树的先序遍历序列和中序遍历序列,输出该二叉树的后序遍历序列。 输入 第一行输入二叉树的先序遍历序列; 第二行输入二叉树的中序遍历序列。 输出 输出该二叉树的后序遍历序列。...
  • u013962600
  • u013962600
  • 2014年05月16日 22:59
  • 5544

JAVA二叉树,给出先序遍历和中序遍历,构造出新的二叉树

注意点; 1.确定整棵二叉树的根节点即先序遍历中的第一个元素root 2.确定root在中序遍历元素的位置,root左边的元素为二叉树的左子树元素Lchild,右边为右子树元素Rchild 3....
  • coder_fkr
  • coder_fkr
  • 2016年05月14日 23:04
  • 1669

根据前序遍历序列和中序遍历序列构造二叉树算法

一个前序遍历序列和一个中序遍历序列可以确定一颗唯一的二叉树。        根据前序遍历的特点, 知前序序列(PreSequence)的首个元素(PreSequence[0])为二叉树的根(root)...
  • yunzhongguwu005
  • yunzhongguwu005
  • 2013年07月08日 11:37
  • 30442

根据先序序列和中序序列创建二叉树

思考:如何才能确定一棵树? 结论:    通过中序遍历和先序遍历可以确定一个树                 通过中序遍历和后续遍历可以确定一个树                 通过先序遍历和后序...
  • bbs375
  • bbs375
  • 2016年10月06日 19:12
  • 7424

根据前序和中序序列,建立二叉树(java实现)

根据前序序列:int[] preSort={1,2,4,7,3,5,6,8}; 中序序列:int[] inSort=new int[]{4,7,2,1,5,3,8,6}; 建立二叉树,求后序遍历等问题...
  • A784586
  • A784586
  • 2017年01月09日 18:13
  • 520

LintCode(72)中序遍历和后序遍历树构造二叉树

题目  中序遍历和后序遍历树构造二叉树 根据中序遍历和后序遍历树构造二叉树 样例 给出树的中序遍历: [1,2,3] 和后序遍历: [1,3...
  • fly_yr
  • fly_yr
  • 2016年06月15日 20:46
  • 1612
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:第十一周项目2 二叉树构造算法--中序序列和后序序列构造二叉树
举报原因:
原因补充:

(最多只允许输入30个字)