# 【十分不错】【离线+树状数组】【TOJ4105】【Lines Counting】

536人阅读 评论(1)

On the number axis, there are N lines. The two endpoints L and R of each line are integer. Give you M queries, each query contains two intervals: [L1,R1] and [L2,R2], can you count how many lines satisfy this property: L1≤L≤R1 and L2≤R≤R2?

Input

First line will be a positive integer N (1≤N≤100000) indicating the number of lines. Following the coordinates of the N lines' endpoints L and R will be given (1≤L≤R≤100000). Next will be a positive integer M (1≤M≤100000) indicating the number of queries. Following the four numbers L1,R1,L2 and R2 of the M queries will be given (1≤L1≤R1≤L2≤R2≤100000).

Output

For each query output the corresponding answer.

[1.......r1] [l2..r2]
用vector （Q[i]）维护~(i为l1-1,r1的值)
表示 [1...i][Q[i][j].l2...Q[i][j].r2] 表示上述~

因为起止点排好序了
一定满足Q[i]的[1....i]
a[]树状数组来维护好l2,r2.

（当初考虑l,r不好存。。开数组不好存，才知道可以表示在数组内就好）
#include <stdio.h>
#include <ctype.h>
#include <string.h>
#include <stdlib.h>
#include <limits.h>
#include <math.h>
#include <algorithm>
#include <vector>
using namespace std;

const int N=100000;

int a[100005];

int inline lowbit(int x){
return x&(-x);
}
while(p<=N){
a[p]=(a[p]+val);
p+=lowbit(p);
}
}
int sum(int p){
int ans=0;
while(p>0){
ans=(ans+a[p]);
p-=lowbit(p);
}
return ans;
}

struct Query{
int l,r;
int oriid;
int orip;
Query(){}
Query(int a,int b,int c,int d):l(a),r(b),oriid(c),orip(d){}
};

vector<Query> qs[100005];

int ans[100005][2];

struct Pair{
int x,y;
Pair(){}
Pair(int a,int b):x(a),y(b){}
bool operator<(const Pair&b)const{
return x<b.x;
}
}side[100005];

int main()
{
int n,m;
while(~scanf("%d",&n)){
for(int i=0;i<n;i++){
scanf("%d%d",&side[i].x,&side[i].y);
}
sort(side,side+n);
for(int i=0;i<=N;i++) qs[i].clear();
scanf("%d",&m);
int maxq=0;
for(int i=0;i<m;i++){
int a,b,c,d;
scanf("%d%d%d%d",&a,&b,&c,&d);
qs[a-1].push_back(Query(c,d,i,0));
qs[b].push_back(Query(c,d,i,1));
maxq=max(maxq,(max(a,b)));
}

memset(a,0,sizeof(a));
int sp=0;
for(int i=0;i<=maxq;i++){
while(sp<n&&side[sp].x==i){
sp++;
}
for(int j=0;j<qs[i].size();j++){
int ans1=sum(qs[i][j].l-1);
int ans2=sum(qs[i][j].r);
ans[qs[i][j].oriid][qs[i][j].orip]=ans2-ans1;
}
}
for(int i=0;i<m;i++){
printf("%d\n",ans[i][1]-ans[i][0]);
}
}
return 0;
}


个人资料
等级：
访问量： 27万+
积分： 5859
排名： 5357
最新评论
css