关闭

[置顶] 机器学习--线性回归(原理与例子)

机器学习,线性回归原理,TensorFlow例子...
阅读(61) 评论(0)

机器学习(7)--VC维数

90年代初,Vapnik and A. Chervonenkis提出了支持向量机(Support vector machines, SVM)和VC(Vapnik-Chervonenkis)维数的概念。 结合上次所说的,我们可以得到如下式子: Ein(g)与Eout(g)之差足够小,即大于一个阈值e(该希腊字母不好显示,暂用e代替)的几率小于右边的式子,这就是我们想要的hypothesis。...
阅读(171) 评论(0)

机器学习(6)--化无限为有限(二)

在“机器学习(5)-化无限为有限”这篇文章中,我们得到了下面的规律: 可以用一个有限的和假设集相关的量mH来替换不可求得M,所以式子 的左边也是一个有限的数,且很大几率是小于1的值,所以Eout(g)是可以很接近Ein(g)的。上限函数(Bounding Function) 上限函数在k时出现break point时最多有多少种(o与x的组合)。 根据枚举可得: 其规律为:...
阅读(157) 评论(0)

机器学习(5)--化无限为有限

在上一篇文章中根据坏的样本和坏的数据的表格中得到如下推论: 对于所有的M(假设的个数),N(数据集规模)和阈值,Hoeffding Inequality都是有效的, 我们不必要知道Eout,可以通过Ein来代替Eout(这句话的意思是Ein(g)=Eout(g) is PAC)。 由上篇文章所讲的Hoeffding Inequality可得到下面式子: 我们的希望 我们希望Eout(g)越接...
阅读(165) 评论(0)

机器学习--Hoeffding Inequality--界定概率边界

问题假设空间的样本复杂度(sample complexity):随着问题规模的增长导致所需训练样本的增长称为sample complexity。实际情况中,最有可能限制学习器成功的因素是训练数据的有限性。在使用学习器的过程中,我们希望得到与训练数据拟合程度高的假设(hypothesis)。(在前面文章中提到,这样的假设我们称之为g)。这就要求训练错误率为0。而实际上,大部分情况下,我们找不到这样的h...
阅读(427) 评论(0)

Tensorflow安装与测试

Tensorflow 机器学习...
阅读(5472) 评论(0)

机器学习(2)--感知机

案例银行办信用卡–获得感知机我们到银行办信用卡时,银行并不是直接就给你办卡的,而是会根据你的一些个人信息、消费信息、个人信誉等指标综合考虑后,才会决定是否给你办卡(不像现在银行办信用卡有点随意)。银行要考虑的指标比如age,salary,year in job,current debt等我们称为特征,假设银行要考虑的特征有n个: 感知机感知机(有些地方叫感知器)是二分类模型,属于线性分类。中g作为...
阅读(159) 评论(0)
    个人资料
    • 访问:28721次
    • 积分:765
    • 等级:
    • 排名:千里之外
    • 原创:50篇
    • 转载:0篇
    • 译文:0篇
    • 评论:3条
    最新评论