关闭
当前搜索:

机器学习--Hoeffding Inequality--界定概率边界

问题假设空间的样本复杂度(sample complexity):随着问题规模的增长导致所需训练样本的增长称为sample complexity。实际情况中,最有可能限制学习器成功的因素是训练数据的有限性。在使用学习器的过程中,我们希望得到与训练数据拟合程度高的假设(hypothesis)。(在前面文章中提到,这样的假设我们称之为g)。这就要求训练错误率为0。而实际上,大部分情况下,我们找不到这样的h...
阅读(495) 评论(0)

Tensorflow安装与测试

Tensorflow 机器学习...
阅读(6503) 评论(0)

机器学习(2)--感知机

案例银行办信用卡–获得感知机我们到银行办信用卡时,银行并不是直接就给你办卡的,而是会根据你的一些个人信息、消费信息、个人信誉等指标综合考虑后,才会决定是否给你办卡(不像现在银行办信用卡有点随意)。银行要考虑的指标比如age,salary,year in job,current debt等我们称为特征,假设银行要考虑的特征有n个: 感知机感知机(有些地方叫感知器)是二分类模型,属于线性分类。中g作为...
阅读(172) 评论(0)
    个人资料
    • 访问:31135次
    • 积分:809
    • 等级:
    • 排名:千里之外
    • 原创:52篇
    • 转载:0篇
    • 译文:0篇
    • 评论:3条
    最新评论