机器学习分类算法应该如何选择?

转载 2015年11月17日 22:27:52

http://blog.echen.me/2011/04/27/choosing-a-machine-learning-classifier/



如何针对某个分类问题决定使用何种机器学习算法? 当然,如果你真心在乎准确率,最好的途径就是测试一大堆各式各样的算法(同时确保在每个算法上也测试不同的参数),最后选择在交叉验证中表现最好的。倘若你只是想针对你的问题寻找一个“足够好”的算法,或者一个起步点,这里给出了一些我觉得这些年用着还不错的常规指南。


训练集有多大?


如果是小训练集,高偏差/低方差的分类器(比如朴素贝叶斯)要比低偏差/高方差的分类器(比如k最近邻)具有优势,因为后者容易过拟合。然而随着训练集的增大,低偏差/高方差的分类器将开始具有优势(它们拥有更低的渐近误差),因为高偏差分类器对于提供准确模型不那么给力。


你也可以把这一点看作生成模型和判别模型的差别。


一些常用算法的优缺点


朴素贝叶斯:  巨尼玛简单,你只要做些算术就好了。倘若条件独立性假设确实满足,朴素贝叶斯分类器将会比判别模型,譬如逻辑回归收敛得更快,因此你只需要更少的训练数据。就算该假设不成立,朴素贝叶斯分类器在实践中仍然有着不俗的表现。如果你需要的是快速简单并且表现出色,这将是个不错的选择。其主要缺点是它学习不了特征间的交互关系(比方说,它学习不了你虽然喜欢甄子丹和姜文的电影,却讨厌他们共同出演的电影《关云长》的情况)。


逻辑回归:  有很多正则化模型的方法,而且你不必像在用朴素贝叶斯那样担心你的特征是否相关。与决策树与支持向量机相比,你还会得到一个不错的概率解释,你甚至可以轻松地利用新数据来更新模型(使用在线梯度下降算法)。如果你需要一个概率架构(比如简单地调节分类阈值,指明不确定性,或者是要得得置信区间),或者你 以后 想将更多的训练数据 快速 整合到模型中去,使用它吧。


决策树:  易于解释说明(对于某些人来说 —— 我不确定我是否在这其中)。它可以毫无压力地处理特征间的交互关系并且是非参数化的,因此你不必担心异常值或者数据是否线性可分(举个例子,决策树能轻松处理好类别A在某个 特征维度x的末端 ,类别B在中间,然后类别A又出现在特征维度x前端的情况 )。它的一个缺点就是不支持在线学习,于是在新样本到来后,决策树需要全部重建。另一个缺点是容易过拟合,但这也就是诸如随机森林(或提升树)之类的集成方法的切入点。另外,随机森林经常是很多分类问题的赢家(通常比支持向量机好上那么一点,我认为),它快速并且可调,同时你无须担心要像支持向量机那样调一大堆参数,所以最近它貌似相当受欢迎。


支持向量机:  高准确率,为避免过拟合提供了很好的理论保证,而且就算数据在原特征空间线性不可分,只要给个合适的核函数,它就能运行得很好。在动辄超高维的文本分类问题中特别受欢迎。可惜内存消耗大,难以解释,运行和调参也有些烦人,所以我认为随机森林要开始取而代之了。


然而。。。


尽管如此,回想一下,好的数据却要优于好的算法,设计优良特征是大有裨益的。假如你有一个超大数据集,那么无论你使用哪种算法可能对分类性能都没太大影响(此时就根据速度和易用性来进行抉择)。


再重申一次我上面说过的话,倘若你真心在乎准确率,你一定得尝试多种多样的分类器,并且通过交叉验证选择最优。要么就从Netflix Prize(和Middle Earth)取点经,用集成方法把它们合而用之,妥妥的。

相关文章推荐

多重共线性的产生原因、判别、检验、解决方法

最近做回归分析,出现了相关系数与回归方程系数符号相反的问题,经过研究,确认是多重共线性问题并探索了解决方法。 在此将多重共线性的相关知识整理如下。 解释变量理论上的高度相关与观测值高度相关...

Manacher算法:求解最长回文字符串,时间复杂度为O(N)

回文串定义:“回文串”是一个正读和反读都一样的字符串,比如“level”或者“noon”等等就是回文串。回文子串,顾名思义,即字符串中满足回文性质的子串。 经常有一些题目围绕回文子串...

机器学习常见算法分类汇总

  • 2017年06月03日 12:07
  • 520KB
  • 下载

机器学习经典算法详解及Python实现--基于SMO的SVM分类器

支持向量机基本上是最好的有监督学习算法,因其英文名为support vector machine,简称SVM。通俗来讲,它是一种二类分类模型,其基本模型定义为特征空间上的间隔最大的线性分类器,其学习策...

机器学习贝叶斯分类算法与应用

  • 2017年08月24日 10:58
  • 137KB
  • 下载

[Java][机器学习]用决策树分类算法对Iris花数据集进行处理

Iris Data Set是很经典的一个数据集,在很多地方都能看到,一般用于教学分类算法。这个数据集在UCI Machine Learning Repository里可以找到(还是下载量排第一的数据哟...

机器学习分类算法—朴素贝叶斯

  • 2014年08月28日 21:52
  • 319KB
  • 下载

【机器学习】分类算法——Logistic回归

一、LR分类器(Logistic Regression Classifier)         在分类情形下,经过学习后的LR分类器是一组权值w0,w1, …, wn,当测试样本的数据输入时,这组权...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:机器学习分类算法应该如何选择?
举报原因:
原因补充:

(最多只允许输入30个字)