HDU 欧拉回路

原创 2016年06月01日 14:43:48
Problem Description
欧拉回路是指不令笔离开纸面,可画过图中每条边仅一次,且可以回到起点的一条回路。现给定一个图,问是否存在欧拉回路?


Input
测试输入包含若干测试用例。每个测试用例的第1行给出两个正整数,分别是节点数N ( 1 < N < 1000 )和边数M;随后的M行对应M条边,每行给出一对正整数,分别是该条边直接连通的两个节点的编号(节点从1到N编号)。当N为0时输入结
束。


Output
每个测试用例的输出占一行,若欧拉回路存在则输出1,否则输出0。



Sample Input
3 3
1 2
1 3
2 3
3 2
1 2
2 3
0


Sample Output
1

0

判断欧拉回路的条件

无向图存在欧拉回路的充要条件
一个无向图存在欧拉回路,当且仅当该图所有顶点度数都为偶数,且该图是连通图。
有向图存在欧拉回路的充要条件
一个有向图存在欧拉回路,所有顶点的入度等于出度且该图是连通图。

第一次使用vector库

#include<stdio.h>
#include<string.h>
#include<iostream>
#include<algorithm>
#include<math.h>
#include<vector>
#include<queue>
#include<stack>
using namespace std;
#define ll long long
const double Inf=1e+9;
vector <int> edge[1001];
bool vis[1001];
int e[1001];   //记录度数
void dfs(int start)
{   //判断是否连通
    int i,p;
    vis[start]=true;
    for (i=0;i<edge[start].size();i++)
        {
            p=edge[start][i];
            if (!vis[p])
                dfs(p);
        }
}
int main()
{
    int i,a,b,m,n;
    while (~scanf("%d",&m),m)
    {
        for (i=1;i<=m;i++)
        {   //初始化
            e[i]=0;
            vis[i]=false;
            edge[i].clear();
        }
        scanf("%d",&n);
        for (i=1;i<=n;i++)
            {
                scanf("%d%d",&a,&b);
                if (a!=b)
                {
                    edge[a].push_back(b);
                    edge[b].push_back(a);
                    e[a]++,e[b]++;
                }
            }
            int flag=1;
            for (i=1;i<=m;i++)
                if (e[i]%2)
            {
                printf("0\n");
                flag=0;
                break;
            }
            if (flag)
            {
                dfs(1);
                for (i=1;i<=m;i++)
                    if (vis[i]==false)
                {
                    flag=0;
                    printf("0\n");
                    break;
                }
            }
            if (flag)
            printf("1\n");
    }
    return 0;
}
输出欧拉回路路径

#include<stdio.h>
#include<iostream>
#include<string.h>
#include<algorithm>
#include<stack>;
using namespace std;
int map[500][500],vis[500][500];
int m,n;
typedef struct node{
    int x,y;
}node;
stack<node>q;
node a;
void euler(int u)
{
    int i;
    for (i=1;i<=n;i++)
      if (map[u][i]&&!vis[u][i])
      {
          vis[u][i]=vis[i][u]=1;
          euler(i);
          a.x=u;
          a.y=i;
         q.push(a);
      }
}
int main()
{
    int i,s,e;
    node a;
    scanf("%d%d",&n,&m);
    for (i=1;i<=m;i++)
        {
            scanf("%d%d",&s,&e);
            map[s][e]=map[e][s]=1;
        }
        euler(1);
        while (!q.empty())
        {
            a=q.top();
            printf("%d %d\n",a.x,a.y);
            q.pop();
        }
    return 0;
}



相关文章推荐

hdu 1878 欧拉回路 水题。测试数据貌似有点问题

Problem Description 欧拉回路是指不令笔离开纸面,可画过图中每条边仅一次,且可以回到起点的一条回路。现给定一个图,问是否存在欧拉回路? Input 测试输入包含若干测试用例。每...

HS BDC (hdu 3472 混合图的欧拉回路)

题意:给出n个单词,问这些单词能否首尾相连组成一个整体,其中部分单词可以翻转。 思路:将每个单词的首尾字母看成结点,每个单词看成一条边,可以看出这是一张混合图,要求判断是否有欧拉路。使用判断欧来回路的...

hdu3018 Ant Trip 欧拉回路

好久好久没做了。。回顾了一小下 题目链接:here 题意:一笔画。。问最少几笔能画完。。 分析: 如果是个欧拉回路一笔就可以完成,如果是个其它连通集,要根据这个集合的奇度数而定,笔划数=奇度数...

hdu 2230 watchcow 【图论-欧拉回路-遍历-输出路径】

Watchcow Time Limit: 3000MS Memory Limit: 65536K Special Judge Description Bessie’s...

HDU 1878 欧拉回路

Problem Description 欧拉回路是指不令笔离开纸面,可画过图中每条边仅一次,且可以回到起点的一条回路。现给定一个图,问是否存在欧拉回路?Input 测试输入包含若干测试用例。每个测...

HDU 3018 Ant Trip ( 并查集+欧拉回路 )

http://acm.hdu.edu.cn/showproblem.php?pid=3018 Problem Description Ant Country consist of N towns....

hdu 5348 MZL's endless loop 欧拉回路

MZL's endless loop Time Limit: 3000/1500 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Ot...

hdu1878欧拉回路【并查集】

#include using namespace std; //题意:判断欧拉回路是否存在 //思路:1、欧拉回路判断条件:所有边的度数为偶数并且能够所有点都可以连起来 //      2、并差...

浙大复试 HDU 1878 欧拉回路

Problem Description 欧拉回路是指不令笔离开纸面,可画过图中每条边仅一次,且可以回到起点的一条回路。现给定一个图,问是否存在欧拉回路?   Input 测试输入包含若干测试...

HDU-1878 欧拉回路(DFS)(并查集)

欧拉回路 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Sub...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:HDU 欧拉回路
举报原因:
原因补充:

(最多只允许输入30个字)