关闭

HDU 找新朋友

75人阅读 评论(0) 收藏 举报
分类:
Problem Description
新年快到了,“猪头帮协会”准备搞一个聚会,已经知道现有会员N人,把会员从1到N编号,其中会长的号码是N号,凡是和会长是老朋友的,那么该会员的号码肯定和N有大于1的公约数,否则都是新朋友,现在会长想知道究竟有几个新朋友?请你编程序帮会长计算出来。
Input
第一行是测试数据的组数CN(Case number,1<CN<10000),接着有CN行正整数N(1<n<32768),表示会员人数。
Output
对于每一个N,输出一行新朋友的人数,这样共有CN行输出。
Sample Input
2
25608
24027
Sample Output
7680

16016

真不知道这个知识点,纯粹看的别人博客

性质:1.若p是质数,φ(p)= p-1.

   2.若n是质数p的k次幂,φ(n)=(p-1)*p^(k-1)。因为除了p的倍数都与n互质

   3.欧拉函数是积性函数,若m,n互质,φ(mn)= φ(m)φ(n).

  根据这3条性质我们就可以推出一个整数的欧拉函数的公式。因为一个数总可以写成一些质数的乘积的形式。

  E(k)=(p1-1)(p2-1)...(pi-1)*(p1^(a1-1))(p2^(a2-1))...(pi^(ai-1))

    = k*(p1-1)(p2-1)...(pi-1)/(p1*p2*...*pi)

    = k*(1-1/p1)*(1-1/p2)...(1-1/pk)

在程序中利用欧拉函数如下性质,可以快速求出欧拉函数的值(a为N的质因素)

  (1)若( N%a ==0&&(N/a)%a ==0)则有:E(N)= E(N/a)*a;

  (2)若( N%a ==0&&(N/a)%a !=0)则有:E(N)= E(N/a)*(a-1);

#include<stdio.h>
#include<string.h>
#include<iostream>
#include<algorithm>
#include<math.h>
#include<queue>
#include<map>
using namespace std;
#define ll long long
const double Inf=1e+9;
int eular(int n)
{
    int ans=1,i;
    for (i=2;i*i<=n;i++)
       if (n%i==0)  //(1)
       {
           n/=i;
           ans*=(i-1);
           while (n%i==0)   //(2)
           {
               n/=i;
               ans*=i;
           }
       }
       if (n>1)
        ans*=(n-1);
       return ans;
}
int main()
{
    int n,t;
    scanf("%d",&t);
    while (t--)
    {
        scanf("%d",&n);
        printf("%d\n",eular(n));
    }
    return 0;
}


0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:24197次
    • 积分:1911
    • 等级:
    • 排名:千里之外
    • 原创:174篇
    • 转载:13篇
    • 译文:0篇
    • 评论:3条
    最新评论