# SGU 113 Nearly prime numbers

#include<iostream>
#include<vector>
#include<algorithm>
#include<cstdio>
#include<queue>
#include<stack>
#include<string>
#include<map>
#include<set>
#include<cmath>
#include<cassert>
#include<cstring>
#include<iomanip>
using namespace std;

#ifdef _WIN32
#define i64 __int64
#define out64 "%I64d\n"
#define in64 "%I64d"
#else
#define i64 long long
#define out64 "%lld\n"
#define in64 "%lld"
#endif

#define FOR(i,a,b)      for( int i = (a) ; i <= (b) ; i ++)
#define FF(i,a)         for( int i = 0 ; i < (a) ; i ++)
#define FFD(i,a)        for( int i = (a)-1 ; i >= 0 ; i --)
#define S64(a)          scanf(in64,&a)
#define SS(a)           scanf("%d",&a)
#define LL(a)           ((a)<<1)
#define RR(a)           (((a)<<1)+1)
#define SZ(a)           ((int)a.size())
#define PP(n,m,a)       puts("---");FF(i,n){FF(j,m)cout << a[i][j] << ' ';puts("");}
#define pb              push_back
#define CL(Q)           while(!Q.empty())Q.pop()
#define MM(name,what)   memset(name,what,sizeof(name))
#define write           freopen("out.txt","w",stdout)

const int inf = 0x3f3f3f3f;
const i64 inf64 = 0x3f3f3f3f3f3f3f3fLL;
const double oo = 10e9;
const double eps = 10e-10;
const double pi = acos(-1.0);

i64 gcd(i64 _a, i64 _b)
{
if (!_a || !_b)
{
return max(_a, _b);
}
i64 _t;
while (_t = _a % _b)
{
_a = _b;
_b = _t;
}
return _b;
};

i64 ext_gcd (i64 _a, i64 _b, i64 &_x, i64 &_y)
{
if (!_b)
{
_x = 1;
_y = 0;
return _a;
}
i64 _d = ext_gcd (_b, _a % _b, _x, _y);
i64 _t = _x;
_x = _y;
_y = _t - _a / _b * _y;
return _d;
}

i64 invmod (i64 _a, i64 _p)
{
i64 _ans, _y;
ext_gcd (_a, _p, _ans, _y);
_ans < 0 ? _ans += _p : 0;
return _ans;
}

int n;
int a;
vector<int>p;
int re;

bool can(int x)
{
int temp = sqrt(x);
for(int i=0;i<p.size();i++)
{
if(!(x%p[i]) && x!=p[i])
{
re = p[i];
return true;
}
if(p[i]>temp)
{
return false;
}
}
return false;
}

void init_prime()
{
p.clear();
p.push_back(2);
for(int i=2;i<=40000;i++)
{
if(!can(i))
{
p.push_back(i);
}
}
return ;
}

int main()
{
init_prime();
cin>>n;
for(int i=1;i<=n;i++)
{
cin>>a;
if(!can(a))
{
cout<<"No.."<<endl;
}
else
{
a/=re;
if(!can(a))
{
cout<<"Yes"<<endl;
}
else
{
cout<<"No"<<endl;
}
}
}
return 0;
}


• 本文已收录于以下专栏：

## sgu 113 Nearly prime numbers

• u014679804
• 2015年03月19日 08:22
• 309

## SGU 113 Nearly prime numbers

Nearly prime number is an integer positive number for which it is possible to find such primes P1 an...
• qq_21120027
• 2015年08月21日 18:29
• 186

## SGU - 113 - Nearly prime numbers （素数）

113. Nearly prime numbers time limit per test: 0.25 sec.  memory limit per test: 4096 KB Near...
• u014355480
• 2015年03月12日 10:17
• 790

## SGU 113 Nearly prime numbers（素数判定）

Description 给出一整数n，判断其是否为两个素数的乘积 Input 第一行为一整数T表示用例组数，之后每行一整数n(1...
• V5ZSQ
• 2016年04月14日 18:59
• 234

## [SGU]113. Nearly prime numbers

Analysis     这题比112还要水……只用从2到sqrt(k)枚举整除的次数就行了。 Accepted Code var n,i,j,k,t,p:longint; beg...
• JerryIHuang
• 2012年10月28日 20:42
• 267

## 【SGU】113. Nearly prime numbers 合数分解

• u013368721
• 2014年11月06日 11:29
• 904

## SGU 113. Nearly prime numbers 素数

m*n=p并且m,n都是素数，那么一定是m,n一个比sqrt(p)大，一个比sqrt(p)小，或者m==n==sqrt(p),所以构造素数表时判断到sqrt(10^9)即可。 #includ...
• anqier0468
• 2013年08月01日 21:07
• 508

## SGU113 Nearly prime numbers

• u010929036
• 2015年05月22日 18:59
• 227

## UVA 10539 Almost Prime Numbers(唯一分解定理)

• qwe585p
• 2015年11月01日 21:37
• 392

## SGU113—— Nearly prime numbers

Nearly prime number is an integer positive number for which it is possible to find such primes P1 an...
• bingsanchun1
• 2013年11月22日 22:02
• 1645

举报原因： 您举报文章：SGU 113 Nearly prime numbers 色情 政治 抄袭 广告 招聘 骂人 其他 (最多只允许输入30个字)