凸多边形三角划分

原创 2012年03月25日 22:00:34

1 动态规划转移方程

设 F[I,J](I<J)表示从顶点 I 到顶点 J 的凸多边形三角剖分后所得到的最大乘积

F[I,J]=Min{F[I,K]+F[K,J]+S[I]*S[J]*S[K]}     (I<K<J)
目标状态为:F[1,N]

2 代码

#include <stdio.h>
#define N 52
#define MAX 999999999
int c[N][N];
int s[N];
int main()
{
	int i,j,k;
	int n;
    scanf("%d",&n);
    for( i=1;i<=n;i++)
         scanf("%d",&s[i]);


	for (i = 1; i <= n; ++i)
	{
		c[i][i+1] = 0;
		for (j = i + 2; j <=n; ++j)
		{
			c[i][j] = MAX;
		}
	}
	for (i = n - 2; i >= 1; --i)
	{
		for (j = i + 2; j <=n; ++j)
		{
			for (k = i + 1; k < j; ++k)
			{
				if (c[i][j] > c[i][k] + c[k][j] + s[i]*s[j]*s[k])
				{
					c[i][j] = c[i][k] + c[k][j] + s[i]*s[j]*s[k];
				}
			}
		}
	}
	printf("%d\n",c[1][n]);
	return 0;
}

版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

凸多边形最优三角剖分(polygon decomposition)

题目来源:http://blog.csdn.net/liuqiyao_01/article/details/8765812 100个动规方程的第五个 思路来源:http://www.cnblogs....

凸多边形最优三角剖分-动态规划

凸多边形最优分割是典型的动态规划问题 凸多边形最优剖分:给定凸多边形,以及定义在由多边形的边和弦上的权函数,使得该多边形三角剖分后所有三角形权值之和为最小。 思路:先将多边形三角剖分 2、最优子结...
  • Limbos
  • Limbos
  • 2015-09-20 11:06
  • 1023

凸多边形的三角剖分

  • 2008-06-20 23:56
  • 14KB
  • 下载

凸多边形最优三角剖分——动态规划

解答:题目中顶点坐标编号从1开始,为了方便编程,将顶点从0开始,顶点的编号变为0到7。定义t[i][j],0= 由于退化的两点多边形{Vi,Vi+1}的权值为0,t[i][i]=0。最优子结构的...

动态规划--凸多边形最优三角剖分

算法设计与实现  王晓东 题目描述: 用多边形顶点的逆时针序列表示凸多边形,即P={v0,v1,…,vn-1}表示具有n条边的凸多边形。         给定凸多边形P,以及定...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)