Seminar《Diffusion Processes for Retrieval Revisited》

原创 2015年11月20日 13:44:03

Reference

一句话表述

综述了diffusion的各种方法,根据它们的共同点得出了一个通用的框架,该框架分为三个部分,Initialization;Definition of the transition matrix;Definition of the diffusion process. 分别在每个部分给出了对应的几种方法,从而将现有的大多数diffusion的方法投影到该框架中;最后根据该框架,在几个数据集上进行(遍历)测试得到了很好的结果。

细节


  • what is diffusion processes ?
    Diffusion processes on affinity graphs for capturing the intrinsic manifold structure defined by pairwise affinity matrices.

the manifold, defined by the provided affinity matrix, is interpreted as a weighted graph, where each element is represented by a node, and edges connect all nodes with corresponding edge weights proportional to the pairwise affinity values. Then the pairwise affinities are re-evaluated in the context of all other elements, by diffusing the similarity values through the graph. The most common diffusion processes are based on random walks, where a transition matrix defines probabilities for walking from one node to a neighboring one, which are fixed proportional to the provided affinities. By repeatedly making random walk steps on the graph, affinities are spread on the manifold, which in turn improves the obtainable retrieval scores.

Figures

Graph based diffusion
A toy example
Recent works
Method
Framework

Some querstions

  1. 给出了框架但是没有给出求解方法—-传统的迭代方法。
  2. 关于RWR与马尔科夫相似的问题—-就是一样的
  3. 马尔科夫与CRF的相似性?

相关文章推荐

Supervised Hashing for Image Retrieval via Image Representation Learning

Supervised Hashing for Image Retrieval via Image Representation Learning背景最邻近搜索,是给定一个query,返回空间中距离qu...

Sequential Match Network: A New Architecture for Multi-turn Response Selection in Retrieval-based Ch

论文链接: https://arxiv.org/pdf/1612.01627.pdfPaper总结笔记: 论文提出了一个基于检索的多轮闲聊架构 闲聊模型一般分为生成模型和检索模型,目前关于检...

图像检索系统《Deep Learning of Binary Hash Codes for Fast Image Retrieval》

引言总结2015年CVPR论文《Deep Learning of Binary Hash Codes for Fast Image Retrieval》,论文主要内容是利用卷积神经网络(CNN)来构建...

#Paper Reading# An Information Retrieval Approach for Chatbot Engines Using Unstructured Documents

论文大体内容: 现有的问答聊天系统很多都是直接从收集到的QR(utterance-response) pairs中直接找回答,所以本文提出DocChat的方法,能够从非结构化文档中寻找回答,以此来达到...

A Latent Semantic Model with Convolutional-Pooling Structure for Information Retrieval笔记

用于搜索的CLSM模型

论文读书笔记-A text clustering framework for information retrieval

这篇文章提出了一种针对文本聚类的模型,在这个模型中首先是对文档之间的距离进行语义上的度量,然后是在这个基础上在RBF核函数定义的高维空间上进行映射,最终实现文档聚类。   下面是本文的一些要点: ...

Instance-Aware Hashing for Multi-Label Image Retrieval

Instance-Aware Hashing for Multi-Label Image Retrieval出版源:《IEEE Transactions on Image Processing》, 2...

理解:Where to Focus: Query Adaptive Matching for Instance Retrieval Using Convolutional Feature Maps

我对《Where to Focus: Query Adaptive Matching for Instance Retrieval Using Convolutional Feature Maps》的...

Deep Learning of Binary Hash Codes for Fast Image Retrieval

Deep Learning of Binary Hash Codes for Fast Image Retrieval论文下载地址 这是一篇台湾中研院发表在CVPR2015年的文章。 之前deep...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:Seminar《Diffusion Processes for Retrieval Revisited》
举报原因:
原因补充:

(最多只允许输入30个字)