关闭
当前搜索:

[置顶] 增强现实技术漫谈(续)——研究内容全面解析

前言 经过上一篇略带诙谐的《增强现实技术漫谈》介绍之后,相信大家已经完全了解了增强现实技术的相关特征和应用领域,并且已经对概念有了清晰的理解了。本文将会针对增强现实技术的研究内容进行分析,希望能够给还没有入门或刚刚入门的朋友一个总体的认知,明确自己在AR领域可以开展哪些方面的研究,找准自己的最佳切入点。   1 增强现实技术初体验 增强现实技术主要包括图示的研究内容,当然还有一些比较生...
阅读(3856) 评论(1)

[置顶] 增强现实技术漫谈

前言 随着信息技术的高速发展,虚拟现实、增强现实等逐渐火热。虚拟现实是一种完全建立虚拟环境,让人类脱离现有环境进入新的世界,它的广泛应用可能还要经过一段时间的积淀,目前虚拟现实主要在科研仿真、虚拟漫游、游戏娱乐、教育培训等领域发挥作用。而从虚拟现实中发展起来的增强现实,旨在增强人类能力,为人类提供各种辅助信息,成为沟通人类个体与信息世界的重要枢纽。目前已经在医疗、交通、教育培训、航天、通信、工业...
阅读(7245) 评论(1)

基于PyTorch的深度学习入门教程(八)——图像风格迁移

前言 本文介绍怎样执行Neural-Style算法。Neural-Style或者叫做Neural-Transfer,将一个内容图像和一个风格图像作为输入,返回一个按照所选择的风格图像加工的内容图像。 原理是非常简单的:我们定义两个距离,一个用于内容(Dc),另一个用于(Ds)。Dc测量两个图像的内容有多像,Ds测量两个图像的风格有多像。然后我们采用一个新图像(例如一个噪声图像),对它进行变化,同...
阅读(240) 评论(4)

基于PyTorch的深度学习入门教程(七)——PyTorch重点综合实践

前言 PyTorch提供了两个主要特性: (1) 一个n维的Tensor,与numpy相似但是支持GPU运算。 (2) 搭建和训练神经网络的自动微分功能。 我们将会使用一个全连接的ReLU网络作为实例。该网络有一个隐含层,使用梯度下降来训练,目标是最小化网络输出和真实输出之间的欧氏距离。目录 Tensors(张量) Warm-up:numpy PyTorch:Tensors Autogra...
阅读(464) 评论(0)

基于PyTorch的深度学习入门教程(六)——数据并行化

前言本文参考PyTorch官网的教程,分为五个基本模块来介绍PyTorch。为了避免文章过长,这五个模块分别在五篇博文中介绍。Part1:PyTorch简单知识Part2:PyTorch的自动梯度计算Part3:使用PyTorch构建一个神经网络Part4:训练一个神经网络分类器Part5:数据并行化本文是关于Part5的内容。 Part5:数据并行化本文中,将会讲到DataParallel使用多...
阅读(305) 评论(1)

基于PyTorch的深度学习入门教程(五)——训练神经网络分类器

前言本文参考PyTorch官网的教程,分为五个基本模块来介绍PyTorch。为了避免文章过长,这五个模块分别在五篇博文中介绍。Part1:PyTorch简单知识Part2:PyTorch的自动梯度计算Part3:使用PyTorch构建一个神经网络Part4:训练一个神经网络分类器Part5:数据并行化本文是关于Part4的内容。 Part4:训练一个神经网络分类器前面已经介绍了定义神经网络,计算损...
阅读(224) 评论(0)

基于PyTorch的深度学习入门教程(四)——构建神经网络

前言本文参考PyTorch官网的教程,分为五个基本模块来介绍PyTorch。为了避免文章过长,这五个模块分别在五篇博文中介绍。Part1:PyTorch简单知识Part2:PyTorch的自动梯度计算Part3:使用PyTorch构建一个神经网络Part4:训练一个神经网络分类器Part5:数据并行化本文是关于Part3的内容。 Part3:使用PyTorch构建一个神经网络神经网络可以使用tou...
阅读(224) 评论(0)

基于PyTorch的深度学习入门教程(三)——自动梯度

前言本文参考PyTorch官网的教程,分为五个基本模块来介绍PyTorch。为了避免文章过长,这五个模块分别在五篇博文中介绍。Part1:PyTorch简单知识Part2:PyTorch的自动梯度计算Part3:使用PyTorch构建一个神经网络Part4:训练一个神经网络分类器Part5:数据并行化本文是关于Part2的内容。 Part2:PyTorch的自动梯度计算 autograd pack...
阅读(171) 评论(0)

基于PyTorch的深度学习入门教程(二)——简单知识

前言本文参考PyTorch官网的教程,分为五个基本模块来介绍PyTorch。为了避免文章过长,这五个模块分别在五篇博文中介绍。Part1:PyTorch简单知识Part2:PyTorch的自动梯度计算Part3:使用PyTorch构建一个神经网络Part4:训练一个神经网络分类器Part5:数据并行化本文是关于Part1的内容。Part1:PyTorch简单知识PyTorch是一个基于Python...
阅读(236) 评论(0)

基于PyTorch的深度学习入门教程(一)——PyTorch安装和配置

@page { margin: 0.79in } p { margin-bottom: 0.1in; line-height: 120% } a:link { so-language: zxx }前言深度神经网络是一种目前被广泛使用的工具,可以用于图像识别、分类,物体检测,机器翻译等等。深度学习(DeepLearning)是一种学习神经网络各种参数的方法。因此,我们将要介绍的深度学习,指的...
阅读(696) 评论(0)

Coursera Machine Learning机器学习课程编程作业参考答案

coursera上的machine learning课程是一门很好的机器学习入门课程。这里将该课程的所有编程作业的答案分享给大家~...
阅读(233) 评论(0)

利用RealSense检测到的手指关节信息自定义简单动态手势

英特尔的RealSense深度摄像头可以检测到手的骨骼信息,给出各个关节的相对位置。这里我自己定义了一些简单的动态手势,例如上下左右移动和左右旋转等等。如果有需要,程序可以继续进行扩展,加入更多的手势。注意,程序基于Unity3D平台实现,在运行中需要读取指尖和手掌中心的模型名称。如果官方的SDK对此有修改,需要在代码中更新。using UnityEngine; using System.Coll...
阅读(327) 评论(0)

Windows10上使用Caffe的Python接口进行图像分类例程

本文将会介绍Caffe的Python接口的使用方法。编辑Python可以使用很多种方法,我们采用的是IPython交互式编辑环境。   1 Python的安装 如果你的Windows电脑还没有安装Python,请先自行搜索Python的安装方法,例如 http://jupyter.org/install.html,推荐使用Anaconda软件包安装方式,这样就自带IPython/Jupyte...
阅读(880) 评论(0)

视觉SLAM中的李群&李代数基础

前言 在做SLAM研究的时候,会涉及到对旋转矩阵求导的问题。这时候需要使用矩阵李群的知识,将旋转或者变换等矩阵李群形式,映射到李代数上求解。本文主要涉及两个特殊矩阵李群:特殊正交群(special orthogonal group)SO(3),表示旋转;特殊欧几里得群(special Euclidean group)SE(3),表示位姿。 1 群的定义 群(Group)是一个集合加上一种...
阅读(1760) 评论(0)

Sublime Text, MikTeX, SumatraPDF 配置LaTeX开发环境的方法

使用LaTeX来编辑论文是一项优雅的工作,我们今天来分享一下怎样在配置LaTeX环境。   1 软件下载与安装 首先,需要声明的是,Sublime Text是可以跨平台的,我们不妨就以Win10系统为例来介绍。配置之前,需要下载好相应的安装包。 (1)      Sublime Text3:http://www.sublimetext.com/3 (2)      MikTex:http...
阅读(722) 评论(2)

C#中的委托和事件

1 委托 委托是寻址方法的.NET版本。它在功能上与C++中的函数指针类似,但是函数指针不是类型安全的,因为无法判断这个指针实际上是指向什么,参数和返回类型也不知道。而委托则是类型安全的类,它定义了返回类型和参数的类型。委托类既可以引用一个方法,也可以引用多个方法。   我们用书上的一个例子来看如何使用委托。 先是定义一个类MathOperations,它有两个静态方法,对double类型...
阅读(668) 评论(0)

Python & Numpy 教程(下)

Numpy Numpy是Python科学计算的核心库。它提供了高性能多维数组对象,以及使用这些数组的工具。如果你已经熟悉MATLAB,你可以找到这个教程来开始使用Numpy。 Arrays 一个numpy的数组(array)是一个由相同类型数值构成的网络(grid),并且被非负整数的元组索引。维数是数组的rank;而数组的shape是一个整数元组,它给出了数组每一维度的大小。 我们可以使用...
阅读(1108) 评论(0)

Python & Numpy 教程(上)

原文网址:http://cs231n.github.io/python-numpy-tutorial/ 该教程来自于 Justin Johnson 我们将会使用Python编程语言来完成本课程(斯坦福大学cs231n)的所有作业。Python是一个伟大的通用编程语言,在一些流行库(numpy,scipy,matplotlib)的帮助下,它可以提供一个科学计算的强大环境。 我们希望你们之中的大...
阅读(830) 评论(0)

最新的Windows Caffe配置方法(Python接口)

首先,重新隆重介绍Windows Caffe的下载地址: https://github.com/BVLC/caffe/tree/windows 真是非常感谢大牛们不辞劳苦地维护和更新这些代码,为我们的科研提供了无限可能。 有一些预编译好的程序,我们有需要可以直接去官网下载。这里说一下自主配置和编译的过程。 1 需要的软件 Visual Studio 2013 或者 2015 C...
阅读(1682) 评论(0)

Windows环境下使用 Caffe在ImageNet上训练网络

在配置好Windows版的Caffe之后,可以使用Windows Caffe训练ImageNet网络,主要有4个步骤: (1)准备图片数据库 (2)将图片数据转换为Caffe可以使用的LMDB或者LevelDB类型 (3)取数据库均值 (4)开始用Caffe.exe训练网络...
阅读(2137) 评论(0)
61条 共4页1 2 3 4 下一页 尾页
    个人资料
    • 访问:164310次
    • 积分:2247
    • 等级:
    • 排名:第19285名
    • 原创:59篇
    • 转载:0篇
    • 译文:2篇
    • 评论:68条
    博客专栏
    文章分类